Документ подписан простой электронной подписью ТВЕННОЕ БЮДЖЕТНОЕ Информа ОБР В ЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ФИО: Позябин Сергей Владимирови ОБРАЗОВАНИЯ Должнест ОБРАЗОВАНИЯ Дата ВЕТЕРИНАРНОЙ МЕДИЦИНЫ и БИОТЕХНОЛОГИИ - Уникальный программный утва имени К.И. СКРЯБИНА» 7e7751705ad67ae2d6295985e6e9170re0ad024c

Левченкова Т.В., Кишкинова О.А.

МАТЕМАТИКА

Учебно - практическое пособие
В двух частях
Часть 1

УДК 51(075.3)

Левченкова, Т.В. Математика: учебнопрактическое пособие: в 2 ч. — Ч. 2. / Т.В. Левченкова, О.А Кишкинова — М.: ФГБОУ ВО МГАВМиБ — МВА имени К.И. Скрябина, 2021.-95 с.

Учебное пособие в двух частях адресовано студентам кинологического колледжа по направлению подготовки — 36.02.01 Ветеринария; 35.02.15 «Кинология» очной, заочной и очно-заочной (вечерней) формы обучения.

Учебное пособие содержит систематизированный краткий теоретический материал по математике с разобранными примерами по темам, а также набор заданий различного уровня сложности для практических занятий и самостоятельной работы студентов.

Рецензенты:

Рудаковская Е.Г. — зав. кафедрой высшей математики ФГБОУ ВО РХТУ имени Д.И. Менделеева, к. т. н., профессор;

Лисицына А.А. – доцент кафедры химии имени профессоров С.И. Афонского, А.Г. Малахова ФГБОУ ВО МГАВМиБ – МВА имени К.И.Скрябина, к. б. н.

Утверждено на заседании учебно-методической комиссии ветеринарно-биологического факультета ФГБОУ ВО МГАВМиБ — МВА имени К.И.Скрябина (протокол № 1 от 28.06.2021 г.).

СОДЕРЖАНИЕ

Предисловие	6
І. Преобразование алгебраических выражений	7
1.1 Понятие множества. Операции над множествами	7
1.2 Модуль действительного числа. Свойства модуля .	8
1.3 Числовые выражения	9
1.4 Формулы сокращённого умножения	. 10
1.5. Корень n – ой степени	. 11
1.6 Степень с рациональным показателем	. 13
II. Алгебраические уравнения и неравенства	
2.1 Линейные уравнения. Системы линейных уравнен	
	. 15
2.2 Линейные неравенства. Системы линейных	
неравенств	. 16
2.3 Квадратные уравнения	. 17
2.4 Решение квадратных неравенств	. 19
2.5 Решение рациональных неравенств методом	
интервалов	
III. Проценты	
3.1 Основные понятия и формулы	. 22
3.2 Задачи на «концентрацию, сплавы и смеси»	
IV. Функции	
4.1 Понятие числовой функции. Свойства функции	
4.2 Преобразование графиков	
4.3 Задачи с графическим условием	. 41
V. Тригонометрия	
5.1 Понятие тригонометрической окружности	
5.2 Тригонометрические выражения	
5.3 Тригонометрические функции	
5.4 Формулы приведения	. 50

5.5 Тождественные преобразования тригонометрических
выражений
5.6 Обратные тригонометрические функции 55
5.7 Тригонометрические уравнения 57
5.7.1 Простейшие тригонометрические уравнения 57
5.7.2 Тригонометрические уравнения вида 60
$\sin x = \pm a; \cos x = \pm a; tgx = \pm a; ctgx = \pm a$
5.7.3 Уравнение вида $f(x) \cdot g(x) = 0$
5.7.4 Квадратные уравнения с тригонометрическим
аргументом и уравнения, сводящиеся к ним 61
5.7.5 Однородные уравнения
5.7.6 Уравнение вида $a \cdot \sin x + b \cdot \cos x = c$
VI. Показательная и логарифмическая функции 64
6.1 Показательная функция, ее свойства и график 64
6.2 Логарифмы. Свойства логарифмов. Преобразование
логарифмических выражений
6.3 Логарифмическая функция, ее свойства и график 70
6.4 Показательные уравнения и системы уравнений 73
6.4.1 Уравнения вида $a^{f(x)} = a^{g(x)}$
6.4.2 Уравнения вида $a^{f(x)} = b$
6.4.3 Уравнения, решаемые заменой переменной 75
6.4.5 Однородные уравнения 76
6.4.6 Системы уравнений 77
6.5 Логарифмические уравнения77
6.5.1 Уравнения вида $\log_a f(x) = \log_a g(x)$
$6.5.2$ Уравнения вида $\log_a f(x) = b$
6.5.3 Уравнения, решаемые заменой переменной 79
6.5.4 Метод приведения логарифмов к одному
основанию
6.5.5 Использование основного логарифмического
тождества и других свойств логарифмов 81

$(\cdot, (\cdot)) q(\mathbf{r})$	
6.5.6 Уравнение вида $(f(x))^{\varphi(x)} = g(x)$	82
6.5.7 Уравнения с отбором корней	82
6.6 Системы логарифмических уравнений	83
6.7 Показательные неравенства	83
6.7.1 Неравенство вида $a^{f(x)} \ge a^{g(x)}$	83
6.7.2 Неравенство вида $a^{f(x)} \ge b$, $a^{f(x)} \le b$	84
6.7.3 Неравенства вида $a^{f(x)} \ge b^{f(x)}$	85
6.7.4 Неравенства, решаемые заменой переменной	86
6.7.5 Однородные неравенства	86
6.8 Логарифмические неравенства	88
6.8.1 Неравенства вида $\log_a f(x) \ge \log_a g(x)$ и неравенства,	
сводящиеся к ним	
6.8.2 Неравенства вида $\log_a f(x) \ge b$	90
6.8.3 Неравенства, решаемые заменой переменной	91
6.8.4 Неравенства, решаемые обобщённым методом	
интервалов или методом рационализации	92
6.8.5 Показательно-степенные неравенства	93
6.9 Системы логарифмических и показательных	
неравенств	94
Список литературы	95

Предисловие

Успешная сдача экзамена ПО математике предполагает комплексные знания по шести разделам «Алгебра»; «Уравнения курса: ШКОЛЬНОГО неравенства»; «Функции»; «Начала математического «Геометрия»; «Элементы комбинаторики, анализа»; статистики и теории вероятностей».

При этом выпускники кинологического колледжа показать умения выполнять вычисления преобразования, решать уравнения неравенства; И выполнять действия с функциями, с геометрическими координатами фигурами, И векторами; строить И простейшие исследовать математические модели, главное – использовать приобретенные знания и умения в практической и профессиональной деятельности и повседневной жизни.

Предлагаемое учебное пособие состоит из двух частей, охватывающих все вышеперечисленные разделы школьного курса математики, и предназначено для аудиторной и самостоятельной работы студентов кинологического колледжа.

По каждой теме приведен справочный материал теоретического характера и описаны методы решения заданий разной сложности, что помогает студентам осваивать темы занятий как в рамках учебного процесса, так и закреплять и повторять их вне занятий. По каждой теме предлагаются задачи.

І. Преобразование алгебраических выражений

1.1 Понятие множества. Операции над множествами

При изложении теоретического материала в данном учебном пособии, мы будем пользоваться следующими общепринятыми математическими обозначениями.

N - множество всех натуральных чисел.

 N_0 - множество всех неотрицательных целых чисел.

Z - множество всех целых чисел.

Q - множество всех рациональных чисел.

R - множество всех действительных (вещественных) чисел.

 ${\bf R}^+$ - множество всех положительных действительных чисел.

⇒ - следует.

⇔ - равносильно; эквивалентно; тогда и только тогда.

def

= - по определению равно.

D(f) - область определения функции y = f(x).

E(f) - множество (область) значений функции y = f(x).

const - постоянная величина.

∈ - принадлежит, содержится; например:

 $x \in R$ - x принадлежит множеству действительных чисел, то есть x является действительным числом.

n:m (для $n,m \in \mathbb{Z}$) — число n делится нацело на число m.

- **1.** Найдите $A \cup B$, $A \cap B$, $A \setminus B$, $B \setminus A$, если:
 - a) $A = \{1, 2, 4, 5\}, B = \{1, 4, 7, 8\};$ 6) A = [-3, 4], B = (0, 6];
 - B) A = (-1,3], B = (3,4).

- 2. Переведите обыкновенную дробь в десятичную:
 - a) $\frac{5}{4}$;
- б) $\frac{3}{8}$; в) $\frac{6}{5}$; г) $1\frac{3}{4}$; д) $\frac{2}{5}$;

- 3. Найдите количество целых чисел, принадлежащих множествам:
- a) [-5;3); 6) $\left(-3,2;\frac{7}{3}\right]$; B) $[-\pi;0) \cup \left\{\frac{4}{3}\right\} \cup \{3\} \cup [5;6)$.
- 4. Найдите длину промежутка:

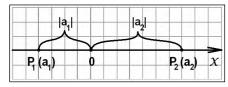
 - a) [-4;3]; 6) $\left[-\frac{1}{2};\frac{7}{3}\right];$
- B) $\left(-\pi;2\pi\right)$.

1.2 Модуль действительного числа. Свойства модуля

Основные понятия и формулы

$$|a| = \begin{cases} a, & ecnu \ a \ge 0 \\ -a, & ecnu \ a < 0 \end{cases}$$

геометрической точки зрения модуль действительного числа a равен расстоянию от начала отсчёта до точки с координатой a на числовой прямой.



$$|a| \ge 0$$
 при всех $a \in R$; $|a| > 0$ при $a \in (-\infty; 0) \cup (0; +\infty)$.

Расстояние между двумя точками $P_1(a_1)$ и $P_2(a_2)$ на числовой прямой вычисляется по формуле $|a_2 - a_1|$.

Основные свойства модуля:

1) $|a| \ge 0$, $a \in R$;

2) $|a| \ge a, a \in R$;

3) $|a| = 0 \Leftrightarrow a = 0$;

4) $|a| = |-a|, a \in R$;

- 5) $|a \cdot b| = |a| \cdot |b|$, $a, b \in R$;
- 6) $|a^2| = |a|^2 = a^2$, $a \in \mathbb{R}$;
- 7) $\left| \frac{a}{b} \right| = \frac{|a|}{|b|}, \ a, b \in \mathbb{R}, b \neq 0;$
- 8) $|a+b| \le |a|+|b|$, $a, b \in R$;
- 9) $|a+b|=|a|+|b| \Leftrightarrow a \cdot b \geq 0$;
- 10) $|a-b| \ge |a| |b|$, $a, b \in R$;
- 11) $b|a| = \begin{cases} |ba|, ecnu \ b \ge 0, \\ -|ba|, ecnu \ b < 0. \end{cases}$
- $A\left(\frac{39}{40}\right)$ **5.** Какая числовой оси ИЗ точек или $B\left(\frac{40}{30}\right)$ расположена ближе к точке C(1)?
- 6. Раскройте знак модуля:
 - a) |4|;

- 6) |-3,5|;
- B) $|7-\sqrt{48}|$;
- Γ) $|8-\sqrt{65}|$; д)|x+3|;
- e) |||x-1|+5|-3|-2|.

- 7. Вычислите:
 - a) $|2-\sqrt{5}|-|\sqrt{5}+3|$;

- 6) $|5-3\sqrt{3}|-|4-3\sqrt{3}|$.
- 8. На числовой прямой укажите множество всех точек с координатой х, удовлетворяющих условиям:

 - a) |x| = 2; 6) |x-2| = 0; B) |x-2| = 3; Γ) |2x+3| = 4;

- д) $|x| \le 4$; e) |x| > 2; ж) |x| > -1; 3) |x+2| > 0;

- и) $|x+2| \le 0$; к) $|x-4| \le 1$; л) |-3x+9| > 6; м) $|-3x+9| \le -2$.

1.3 Числовые выражения

- 9. Вычислите. Ответ запишите в десятичном виде:
- a) $\frac{3}{8} 0.2$.

- (5) $3,4+\frac{7}{4}$; B) $0,8-\frac{9}{12}$; (7) $2\frac{3}{10}-3\frac{1}{4}$;
- $\frac{13}{4} \cdot 1\frac{3}{5}$: e) $\frac{1,5 \cdot 2\frac{4}{5}}{5}$: ж) $\frac{5}{7} : 1\frac{3}{7}$: 3) $\frac{13}{8} : 1,1$

$$\frac{(1,09-0,29)\cdot 1\frac{1}{4}}{\frac{4}{27}}; K)^{\frac{5}{9}:\frac{2}{27}}; \pi)^{\frac{6,72:\frac{3}{5}+1\frac{1}{8}\cdot 0,8}{}}$$

1.4 Формулы сокращённого умножения

Пусть $a, b \in \mathbb{R}$. Тогда:

$$(a \pm b)^{2} = a^{2} \pm 2ab + b^{2};$$

$$(a \pm b)^{3} = a^{3} \pm 3a^{2}b + 3ab^{2} \pm b^{3};$$

$$a^{2} - b^{2} = (a - b)(a + b);$$

$$a^{3} - b^{3} = (a - b)(a^{2} + ab + b^{2})$$

$$a^{3} + b^{3} = (a + b)(a^{2} - ab + b^{2})$$

10. Выполните действия:

a)
$$\frac{x}{3} - \frac{x-4}{5}$$

6)
$$\frac{3y-2}{6} + \frac{y+1}{4}$$

a)
$$\frac{x}{3} - \frac{x-4}{5}$$
; 6) $\frac{3y-2}{6} + \frac{y+1}{4}$; B) $\frac{b^2}{2b-10} + \frac{25}{10-2b}$;

$$\Gamma$$
) $\frac{3x-5}{x} - \frac{3y-2}{y}$;

$$\Gamma$$
) $\frac{3x-5}{x} - \frac{3y-2}{y}$; Д) $\frac{3a+1}{7a} - \frac{7a+b}{14ab} - \frac{b-1}{2b}$; e) $\frac{p}{p^2-9} - \frac{p+3}{p^2-3p}$;

$$\frac{c}{p^2-9} - \frac{1}{p^2-3p}$$

ж)
$$\frac{2}{y^2-4} - \frac{1}{y^2+2y}$$
; 3) $\frac{3}{x^2-2x} \cdot \frac{2x-4}{x}$; u) $\frac{c^2+4c+4}{2c-6} \cdot \frac{c^2-9}{5c+10}$.

$$(u)\frac{c^2+4c+4}{2c-6}\cdot\frac{c^2-9}{5c+10}$$

11. Разложите на множители:

a)
$$4x - x^3$$
;

6)
$$9x^3 - x$$
:

B)
$$11ay - 8(x + y) + 11ax$$
;

$$\Gamma$$
) $ab^2 + b^2 - 9 - 9a$; Π) $2 - 2b^2 - a + ab^2$; e) $1 - 3x + 3xy - y$;

e)
$$1-3r+3ry-y$$
.

ж)
$$15x^7y^{11}z^{15} - x^{11}y^{15}z^7$$
;

3)
$$x^5y^{15}z^{25} + 7x^{15}y^{25}z^5$$
;

и)
$$x^4 - 8x$$
;

$$K) x^4 - 27x$$
.

Найдите значение выражения: **12.**

a)
$$\frac{c^5 + c^6}{c^3 - c^5}$$
 при $c = 0, 2$

а)
$$\frac{c^5 + c^6}{c^3 - c^5}$$
 при $c = 0,2$; б) $\frac{a^8 + a^9}{a^6 - a^8}$ при $a = 0,6$.

13. Упростите выражение:

a)
$$\frac{x^2 - 16y^2}{4y + x}$$
;

6)
$$\frac{a^2-9}{a^2+6a+9} \cdot (a+3)$$
;

B)
$$(3p-5q)^2 + (3p+5q)^2$$
; Γ) $\frac{16a^2-9b^2}{(3b-4a)^2}$;

Д)
$$\frac{x^2 - 2xy + y^2}{x^2 - y^2}$$
: $(x - y)$; e) $\left(\frac{1}{b^2} - \frac{1}{a^2}\right) \frac{ab}{a+b}$; \mathcal{K}) $\frac{a^3 - 1}{a^2 - 1}$: $\frac{1}{a+1}$.

1.5. Корень п – ой степени

Основные формулы

$$\sqrt[2n]{a} = b \Leftrightarrow b^{2n} = a$$
, где $n \in N, a \ge 0, b \ge 0$; $\sqrt{a} = b \Leftrightarrow \begin{cases} b \ge 0, \\ a = b^2. \end{cases}$

Основные свойства:

1)

a)
$$\sqrt[2n]{ab} = \sqrt[2n]{|a|} \cdot \sqrt[2n]{|b|}, a \cdot b \ge 0;$$

$$6) \sqrt[2n+1]{ab} = \sqrt[2n+1]{a} \cdot \sqrt[2n+1]{b}, a \in R, b \in R.$$

3) $\left(\sqrt[n]{a}\right)^k = \sqrt[n]{a^k}$, если n — четное, $a \ge 0$; если n — нечетное, $a \in R$.

5)
$$\sqrt[nk]{a^n} = \sqrt[k]{|a|}$$
, если $n-$ четное; $\sqrt[nk]{a^n} = \sqrt[k]{a}$, если $n-$ нечетное;

2)

a)
$$\sqrt[2n]{\frac{a}{b}} = \frac{\sqrt[2n]{|a|}}{\sqrt[2n]{|b|}}, a \cdot b \ge 0; b \ne 0;$$

6)
$$2n+1\sqrt{\frac{a}{b}} = \frac{2n+1\sqrt{a}}{2n+1\sqrt{b}}, a \in R, b \in R \setminus \{0\}$$
.

4)
$$\sqrt[n]{\sqrt[k]{a}} = \sqrt[nk]{a}$$
, если k или n — четное, $a \ge 0$;

если k и n — нечетные, $a \in R$.

6) a)
$$(\sqrt[2n]{a})^{2n} = a, a \ge 0$$
;

6)
$$\left(\sqrt[2n+1]{a}\right)^{2n+1} = a, a \in R$$
.

7)
$$\sqrt[2n]{a^{2n}} = |a|; \sqrt{a^2} = |a|; a \in \mathbb{R}.$$

9) a)
$$a \cdot \sqrt[2n]{b} = \begin{cases} 2\sqrt[n]{a^{2n}b}, ecnu \ a \ge 0, b \ge 0, \\ -2\sqrt[n]{a^{2n}b}, ecnu \ a < 0, b \ge 0. \end{cases}$$

8)
$$\sqrt[2n+1]{a^{2n+1}} = a, a \in R.$$

6)
$$a \cdot \sqrt[2n+1]{b} = \sqrt{a^{2n+1}b}, a \in R, b \in R.$$

14. Вычислите без помощи калькулятора:

a)
$$2\sqrt{9} - \sqrt{64}$$
;

6)
$$\sqrt{5,29} - \sqrt{1,44}$$
; B) $\frac{1}{9}\sqrt{0,81} - 1$;

B)
$$\frac{1}{9}\sqrt{0.81}-1$$

$$\Gamma$$
) $-5 \cdot \sqrt{0.25} + 2.4$; д) $(\sqrt{0.4})^2 - 0.5$; e) $0.7 - (\sqrt{0.9})^2$;

д)
$$(\sqrt{0.4})^2 - 0.5$$
:

e)
$$0.7 - \left(\sqrt{0.9}\right)^2$$

ж)
$$\sqrt{0.5^2-0.4^2}$$
; 3) $\sqrt{37^2-12^2}$;

3)
$$\sqrt{37^2-12^2}$$

и)
$$\sqrt{(0,28)^2-(0,12)^2}$$
;

15. Вычислите без помощи калькулятора:

a)
$$\sqrt{(-0,7)^2 \cdot 2^6}$$
;

6)
$$\sqrt{3^8 \cdot (-5)^4}$$
;

6)
$$\sqrt{3^8 \cdot (-5)^4}$$
; B) $\sqrt[3]{-0.25} \cdot \sqrt[3]{-0.5}$;

$$\Gamma$$
) $\sqrt[3]{-0.008 \cdot 27}$;

$$\pi$$
) $\frac{\sqrt[3]{250}}{\sqrt[4]{5}}$;

$$\Gamma$$
) $\sqrt[3]{-0,008 \cdot 27}$; д) $\frac{\sqrt[3]{250}}{4\sqrt[3]{2}}$; е) $\sqrt[3]{10} \cdot \sqrt[3]{\frac{25}{16}}$;

ж)
$$\frac{\sqrt[3]{135}}{3\sqrt[3]{5}}$$
;

3)
$$\sqrt[3]{81} \cdot \sqrt[3]{\frac{16}{6}}$$

3)
$$\sqrt[3]{81} \cdot \sqrt[3]{\frac{16}{6}}$$
; H) $5\sqrt{5} \cdot \sqrt[8]{5} \cdot \sqrt[8]{125}$;

$$\kappa) \sqrt{3} \cdot \sqrt[5]{3} \cdot \sqrt[10]{27};$$

к)
$$\sqrt{3} \cdot \sqrt[5]{3} \cdot \sqrt[10]{27}$$
; л) $\sqrt{(-5)^2 \cdot 3^4}$; м) $\frac{\sqrt[4]{12}}{\sqrt[4]{125}}$.

16 Упростите:

a)
$$\sqrt{8+2\sqrt{7}}$$
;

6)
$$\sqrt{28+10\sqrt{3}}$$
;

B)
$$\sqrt{5+2\sqrt{6}}$$
:

$$\Gamma$$
) $\sqrt{37-20\sqrt{3}}$;

$$\pi$$
) $\sqrt{17+12\sqrt{2}}$:

e)
$$\sqrt[3]{9+\sqrt{17}} \cdot \sqrt[3]{9-\sqrt{17}}$$
;

ж)
$$\sqrt[3]{\sqrt{37-8}} \cdot \sqrt[3]{\sqrt{37+8}}$$
; 3) $\sqrt{(1+3\sqrt{2})^2}$;

3)
$$\sqrt{(1+3\sqrt{2})^2}$$
;

и)
$$\sqrt{(1-3\sqrt{2})^2}$$
;

K)
$$\sqrt{(2-\sqrt{3}-\sqrt{15})^2}$$
;

$$\Pi) \; \frac{4}{3+\sqrt{15}} + \frac{4}{3-\sqrt{15}};$$

M)
$$\frac{9}{\sqrt{7}+2} + \frac{12}{\sqrt{7}-1} - \frac{12}{3-\sqrt{7}}$$
.

17. Внесите множитель под знак корня:

a)
$$2\sqrt{3}$$
:

5)
$$-2\sqrt{3}$$
; B) $-2\sqrt[3]{3}$;

б)
$$-2\sqrt{3}$$
; в) $-2\sqrt[3]{3}$; г) $a\sqrt{3}$; д) $2\sqrt[7]{q^3}$; е) $a\sqrt[5]{3}$.

18. Вынесите множитель из-под знака корня:

a)
$$\sqrt{\frac{75}{81}}$$
;

$$6) \sqrt[4]{\frac{16a^4}{(-b)^8}};$$

а)
$$\sqrt{\frac{75}{81}}$$
; б) $\sqrt[4]{\frac{16a^4}{(-b)^8}}$; в) $\sqrt[4]{\frac{16a^4}{(-b)^8}}$, если $a < 0$ и $b < 0$;

$$\Gamma$$
) $\sqrt[5]{\frac{a^{15}}{b^{10}}}$, если $a < 0$ и $b < 0$

$$\Gamma) \sqrt[5]{\frac{a^{15}}{b^{10}}}, \ \text{если} \ \ a < 0 \ \text{и} \ \ b < 0 \ ; \qquad \qquad \text{Д}) \sqrt{\frac{4a^2 - 4a + 1}{a^6}}, \ \text{если} \ \ _{0 < a \le \frac{1}{2}}.$$

1.6 Степень с рациональным показателем

Основные формулы

$$a^{\frac{m}{n}} = \sqrt[n]{a^m}$$
, где $a > 0$, $m \in \mathbb{Z}$, $n \in \mathbb{N}$

Основные свойства для любых a > 0 u b > 0:

1)
$$a^0 = 1$$
;

4)
$$(a^x)^y = a^{xy}$$

1)
$$a^{0} = 1$$
;
2) $a^{x} \cdot a^{y} = a^{x+y}$;
3) $\frac{a^{x}}{a^{y}} = a^{x-y}$;
4) $(a^{x})^{y} = a^{xy}$;
5) $(ab)^{x} = a^{x} \cdot b^{x}$;
7) $a^{-x} = \frac{1}{a^{x}}$.

$$2) \ a^{x} \cdot a^{y} = a^{x+y}$$

$$5) (ab)^x = a^x \cdot b^x$$

7)
$$a^{-x} = \frac{1}{x}$$

19. Упростите выражение:

a)
$$\frac{a^4 \cdot a^7}{a^6}$$

$$6) \frac{b^8}{b^3 \cdot b^4}$$

B)
$$\frac{a^3 \cdot a^4}{a^5}$$

a)
$$\frac{a^4 \cdot a^7}{a^6}$$
; 6) $\frac{b^8}{b^3 \cdot b^4}$; B) $\frac{a^3 \cdot a^4}{a^5}$; Γ) $(-x^3)^2 \cdot (-2x^{-2}y)^3$;

Д)
$$0.2x^{-5}$$
; $y^{-4}(-2x^3y)^4$; e) $-3x^2y^5:(\frac{1}{2}xy^5)$.

e)
$$-3x^2y^5:\left(\frac{1}{2}xy^5\right)$$

20. Вычислите:

a)
$$\frac{28^6}{7^5 \cdot 4^5}$$
;

$$6) \frac{2^{9} (7^{3})^{3}}{14^{7}}$$

$$\Gamma$$
) $\frac{2^8 \cdot 3^6}{6^6}$

Д)
$$\frac{2^{-1} \cdot 5}{10^{-2}}$$

e)
$$\frac{18^8}{2^6 \cdot 9^6}$$
;

Д)
$$\frac{2^{-1} \cdot 5}{10^{-2}}$$
; e) $\frac{18^8}{2^6 \cdot 9^6}$; ж) $\frac{2^{-1} \cdot 7^3}{2^{-6} \cdot 14^2}$.

21. Вычислите:

a)
$$81^{\frac{1}{4}} \cdot 32^{\frac{2}{5}}$$

6)
$$(27 \cdot 64)^{\frac{1}{3}}$$

B)
$$4 \cdot \left(\frac{8}{27}\right)^{-\frac{1}{3}}$$

д)
$$\frac{2^{2,4}}{5\cdot 2^{0,4}}$$
;

e)
$$\frac{9}{(81)^{-\frac{1}{4}}}$$
;

$$\times$$
) $\frac{3^{1,7}}{2\cdot 3^{-0,3}}$;

и)
$$5^{\frac{2}{5}} \cdot \sqrt[5]{125} - 8;$$

$$\kappa$$
) $3-6^{0.75}\cdot\sqrt[4]{6}$;

и)
$$5^{\frac{2}{5}} \cdot \sqrt[5]{125} - 8;$$
 к) $3 - 6^{0.75} \cdot \sqrt[4]{6};$ л) $4 \cdot 81^{\frac{1}{4}} - (0.5)^{\circ}.$

22. Представьте в виде степени выражение:

a)
$$\frac{7^{2,7}}{7^{0,9}}$$

$$6) \frac{7^{\frac{2}{5}} \cdot 7^{\frac{3}{5}}}{7^2}$$

a)
$$\frac{7^{2,7}}{7^{0.9}}$$
; 6) $\frac{7^{\frac{2}{5}} \cdot 7^{\frac{3}{5}}}{7^2}$; B) $\left(\frac{1}{25}\right)^{\frac{3}{4}} \cdot 125^{\frac{1}{2}}$; Γ) $\frac{\left(d^{\frac{1}{2}}\right)^{\frac{5}{5}}}{\sqrt[3]{d^5}}$;

$$\Gamma) \frac{\left(d^{\frac{1}{2}}\right)^{\frac{4}{5}}}{\sqrt[3]{d^5}};$$

Д)
$$\frac{m^{2,4} \cdot m^{-2\frac{4}{5}}}{m^{-5,4}}$$
;

e)
$$(\sqrt[6]{x^{13}})^3 \cdot \sqrt[4]{x^3}$$

Д)
$$\frac{m^{2,4} \cdot m^{-2\frac{4}{5}}}{m^{-5,4}}$$
; e) $\left(\sqrt[6]{x^{13}}\right)^3 \cdot \sqrt[4]{x^3}$; ж) $\left(\left(5^{\frac{15}{4}}\right)^{0,8} + 19\right)^{0,5}$.

23. Упростите:

a)
$$m^{5,4} \cdot 6m^{-\frac{1}{5}}$$
;

a)
$$m^{5,4} \cdot 6m^{-\frac{1}{5}}$$
; 6) $5z^{\frac{3}{5}} + 3(z^{0,2})^3$; B) $4a^{-3,8} \cdot (-a^{1,2})$;

B)
$$4a^{-3.8} \cdot (-a^{1.2})$$

$$\Gamma$$
) $-a^{0.8} \cdot 2a^{-4.2}$; Д) $-43\sqrt[8]{c^5} + 3\left(c^{\frac{1}{8}}\right)^5$.

24.Вычислите: a) $\sqrt[6]{5^{10} \cdot 3^7} \cdot \sqrt[3]{3^{2.5} \cdot 5}$; б) $\sqrt[4]{2^5 \cdot 7^3} \cdot \sqrt{2^{1.5} \cdot 7^{0.5}}$.

25. Упростите: a)
$$\frac{a^{\frac{1}{2}}b^{\frac{1}{2}}-a^{\frac{1}{2}}b}{\frac{1}{2}}$$
; б) $\frac{1+p^{0.5}}{p+p^{0.5}+1}:\frac{1}{p^{1.5}-1}$.

$$\frac{1+p^{0.5}}{p+p^{0.5}+1}:\frac{1}{p^{1.5}-1}.$$

II. Алгебраические уравнения и неравенства

2.1 Линейные уравнения. Системы линейных уравнений

1. Решите уравнение:

a)
$$3x-5=1-2x$$
;

6)
$$5-(2x+3)=4(x-1)$$
;

B)
$$3x + 2(11-x) = 7 - 2(x-3)$$
; Γ) $\frac{2}{x-3} = \frac{7}{x+1}$;

$$\mathbb{Z}$$
) $\frac{2}{x-3} = 7$;

e)
$$\frac{6}{x-1} = \frac{5}{x}$$
;

$$\mathbb{K}) \ 3 + 2x = \frac{7x}{5};$$

3)
$$\frac{-3x}{4} = 1 - 2x$$
;

$$\mu$$
) $\frac{2x-3}{7-x} = \frac{1}{5}$;

K)
$$\frac{x}{2-x} = \frac{3}{2}$$
;

$$\Pi$$
) $4 = \frac{5}{x+4}$;

M)
$$\frac{x-4}{3} + \frac{x}{2} = 5$$
;

H)
$$3 + \frac{4x-9}{5} = \frac{5x+9}{6}$$

H)
$$3 + \frac{4x-9}{5} = \frac{5x+9}{6}$$
; o) $\frac{1}{2}(x-8) + \frac{3}{10} = -0.2$;

2. Решите уравнений. Приведите систему геометрическую интерпретацию полученного результата

a)
$$\begin{cases} 7x - 14y = 21, \\ 2x - 2y = 3; \end{cases}$$
 6)
$$\begin{cases} 3x + 2y = 8, \\ 4x - y = 7; \end{cases}$$
 B)
$$\begin{cases} x + 4y = 11, \\ 2x + y = 1; \end{cases}$$
 r)
$$\begin{cases} 3x + y = -7, \\ 2x - 5y = 1; \end{cases}$$
 J)
$$\begin{cases} -2x - 3y = 6, \\ x + 2y = -5; \end{cases}$$
 e)
$$\begin{cases} 7x - 14y = 21, \\ x - 2y = 3; \end{cases}$$

$$\begin{cases} 3x + 2y = 8 \\ 4x - y = 7 \end{cases}$$

B)
$$\begin{cases} x + 4y = 11, \\ 2x + y = 1; \end{cases}$$

$$\Gamma) \begin{cases} 3x + y = -7 \\ 2x - 5y = 1; \end{cases}$$

$$\exists A = \begin{cases} -2x - 3y = 6 \\ x + 2y = -5; \end{cases}$$

e)
$$\begin{cases} 7x - 14y = 21 \\ x - 2y = 3; \end{cases}$$

ж)
$$\begin{cases} 7x - 14y = 21, \\ x - 2y = 7; \end{cases}$$

3. Найдите координаты точки пересечения прямых 3x + 5y - 1 = 0 и 5x - 4y + 3 = 0.

2.2 Линейные неравенства. Системы линейных неравенств

1. Решите неравенство:

a)
$$2x > 6$$
;

$$6) -10x < 9$$
;

6)
$$-10x < 9$$
; B) $5x - 7 \le 3x + 9$;

$$\Gamma$$
) $4(7x-3)-8(4x-7)\geq 0$; д) $\frac{3x+1}{5}<1$; е) $\frac{1-6x}{7}\leq 1$;

$$(1) \frac{3x+1}{5} < 1;$$
 $(2) \frac{1}{5}$

$$\mathbb{K}$$
) $\frac{2x-1}{5} - 3x > \frac{10x+1}{5}$;

3)
$$\frac{3x-1}{4} - \frac{3(x-2)}{8} - 1 \le \frac{3x}{8}$$
;

и)
$$1-\frac{x}{3} > 0, 1-\frac{1}{3}(x-7)$$
;

K)
$$\frac{1+x}{3} > 2x+1$$
;

л)
$$\frac{8x-7}{15} - \frac{4x+6}{45} < 0,2$$
;

M)
$$\frac{3}{5}(3x-1) > \frac{1}{8}(4-x)$$
;

H)
$$(x-4):\frac{7}{8}<\frac{5}{4}(x-7)$$
;

o)
$$(3-x)\cdot(\sqrt{2}-\sqrt{3})>0$$
;

$$\Pi$$
) $(4-x)(\sqrt{2}-\sqrt{5})>0$;

p)
$$(\sqrt{6} - \sqrt{7})x < \frac{1}{\sqrt{6} + \sqrt{7}}$$
;

2. Найдите множество значений x, удовлетворяющих условиям:

a)
$$\begin{cases} x \ge 2, & \begin{cases} x \ge 2, \\ x > 3; \end{cases} & \begin{cases} x > 3; \end{cases}$$

$$6) \begin{cases} x \le 2, & x \le 2, \\ x < -3; & x < -3; \end{cases}$$

B)
$$\begin{cases} x+1 > 0, & \begin{cases} x+1 > 0, \\ 2x+1 \le 5; \end{cases} & 2x+1 \le 5; \end{cases}$$

$$\Gamma) \begin{cases} x - 1 > 0, & \begin{bmatrix} x - 1 > 0, \\ -2x \ge 0; & \begin{bmatrix} -2x \ge 0; \end{bmatrix} \end{cases}$$

e)
$$\begin{cases} x = 6, & x = 6, \\ x \in \emptyset : & x \in \emptyset : \end{cases}$$

ж)
$$\begin{cases} x = 7, & x = 7, \\ x \in R; & x \in R; \end{cases}$$

3)
$$\begin{cases} 2-3(x+1) > -7, \\ 2(x-3) > x-8; \end{cases}$$

$$\mathbf{U}) \begin{cases} 3+2(x-4)<-7, \\ 3(x+1)>-9-x; \end{cases}$$

K)
$$\begin{cases} 2(3-4x)+5>6-7x, \\ 2(x-2)<4x+7; \end{cases}$$

$$\Pi \begin{cases} \frac{2x+1}{5} - \frac{2-x}{3} > 1, \\ \frac{5x}{4} - \frac{6x-1}{4} \le \frac{4x+1}{12} - \frac{1}{6}; \\ 1 - \frac{1-x}{2} < 4 - \frac{5+4x}{3}, \\ 2 - \frac{x+8}{4} > 0; \end{cases} \qquad \qquad M \end{cases} \begin{cases} 2 - \frac{3+2x}{3} > 1 - \frac{x+6}{2}, \\ 3 + \frac{x}{4} < x; \\ 3 + \frac{x}{4} < x; \end{cases}$$

2.3 Квадратные уравнения

Основные понятия и формулы

Квадратным уравнением называется уравнение вида $ax^2 + bx + c = 0$, $a \ne 0$. Если $D = b^2 - 4ac \ge 0$, то его корни $x_{1,2} = \frac{-b \pm \sqrt{D}}{2a}$. Если **b** — чётное, удобно пользоваться

формулой
$$x_{1,2} = \frac{-\frac{b}{2} \pm \sqrt{\frac{D}{4}}}{a}$$
, где $\frac{D}{4} = \left(\frac{b}{2}\right)^2 - ac \ge 0$.

1. Решите уравнение:

a)
$$x^2 = 25$$
;

6)
$$4x^2 - 8 = 0$$
; B) $x^2 = 1,21$;

3)
$$x^2 = 1.21$$
:

$$\Gamma$$
) $\frac{x^2}{2} + 8 = 0$;

д)
$$14x^2 = \frac{2}{7}$$
;

e)
$$(x+5)^2 = 0$$
;

ж)
$$(x-1,5)^2 = 2,25$$
;

Ж)
$$(x-1,5)^2 = 2,25$$
; 3) $(x+0,5)^2 = 6,25$; И) $2x^2 + 5x = 0$;

и)
$$2x^2 + 5x = 0$$
:

K)
$$x^2 = 3x$$
;

л)
$$3x^2 - 2x = 0$$
; м) $x = 5x^2$;

M)
$$x = 5x^2$$
;

H)
$$(x+3)(x-4)=0$$
; H) $(x+3)(x-4)=0$;

$$(0) 2(x-0.5)(x+$$

$$,11) 4x - 4x + 1 = 0$$

p)
$$9x - 24x + 10 =$$

c)
$$x^2 - x - 2 = 0$$
;

p)
$$9x^2 - 24x + 16 = 0$$
; c) $x^2 - x - 2 = 0$; T) $2x^2 + 3x - 5 = 0$;

y)
$$x^2 + 3x + 7 = 0$$
;

$$\Phi) 4x^2 - x - 3 = 0; \quad X) 2x^2 + x - 3 = 0.$$

$$(x) 2x^2 + x - 3 = 0$$

2. Решите уравнение:

a)
$$\frac{28}{x-1} + 4 = x$$
;

6)
$$3x+5=\frac{80}{x-1}$$
; B) $\frac{6}{x}+\frac{5}{x}+2=3$;

B)
$$\frac{6}{x} + \frac{5}{x} + 2 = 3$$

$$\Gamma$$
) $\frac{2}{x-1} + \frac{3}{x+1} = 1$;

$$\mathbb{Z}$$
Д) $\frac{x-4}{x-3} = \frac{2}{9-6x+x^2}$

- 3. Камень брошен вниз с высоты 84 м. Высота h, на которой находится камень во время падения, зависит от t: $h(t) = 84 16t 5t^2$. Сколько секунд будет падать камень?
- 4. Камень брошен вниз с высоты 36 м. Пока камень не упал, высота, на которой он находится, описывается формулой $h(t) = 36 3t 5t^2$ (h высота в метрах, t время в секундах, прошедшее с момента броска). Сколько секунд камень будет падать?
- 5. В боковой стенке бака вблизи дна закреплен кран. После его открытия вода начинает вытекать из бака, при этом $h(t) = 2.8 1.68t + 0.14t^2$ (h высота в метрах, t время в минутах). В течение какого времени вода будет вытекать из бака?
- 6. Мяч ударился о стенку на высоте 3 метра, после этого мяч упал на землю по такой траектории, что расстояние до земли как функция расстояния до стенки выражалась формулой $h(d)=3-0,48d^2$ (все величины указаны в метрах). На каком расстоянии от стенки мяч коснулся земли? Ответ укажите в метрах.
- 7. В боковой стенке высокого цилиндрического бака у самого дна закреплен кран. После его открытия вода начинает вытекать из бака, при этом высота столба воды в нем, выраженная в метрах, меняется по закону $H(t) = H_0 \sqrt{2gH_0}kt + \frac{g}{2}k^2t^2$,
- где t время в секундах, прошедшее с момента открытия крана, $H_0 = 20\,\mathrm{M}$ начальная высота столба воды, $k = \frac{1}{50}$ отношение площадей поперечных сечений крана и бака, а g ускорение свободного падения (считайте $g = 10\,\mathrm{M/c^2}$). Через сколько секунд после открытия крана в баке останется четверть первоначального объема воды?

2.4 Решение квадратных неравенств

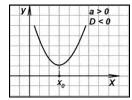
Разложение квадратного трёхчлена на множители

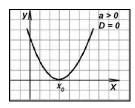
Квадратный трёхчлен $y = ax^2 + bx + c$ $(a \neq 0)$ раскладывается на множители следующим образом: $ax^{2} + bx + c = a(x - x_{1})(x - x_{2})$, где $x_{1}; x_{2}$ - корни квадратного трёхчлена.

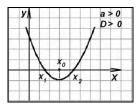
- 1. Разложите на множители:

- Γ) $6x^2 13x + 6$; Π) $4x^2 + 4x + 1$; Θ) $9x^2 30x + 25$.

Графический метод решения квадратного уравнения







$$ax^2 + bx + c > 0$$
$$\Leftrightarrow x \in R \bullet$$

$$ax^{2} + bx + c > 0 \qquad ax^{2} + bx + c \ge 0$$

$$\Leftrightarrow \qquad \Leftrightarrow \qquad \Leftrightarrow$$

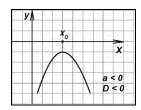
$$x \in (-\infty; x_{0}) \cup (x_{0}; +\infty); \quad x \in (-\infty; x_{1}] \cup [x_{2}; +\infty);$$

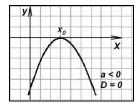
$$ax^{2} + bx + c \le 0 \qquad ax^{2} + bx + c < 0$$

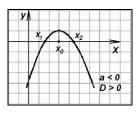
$$\Leftrightarrow x = x_{0}; \qquad \Leftrightarrow x \in (x_{1}; x_{2}).$$

$$ax^{2} + bx + c \ge 0$$

$$\Leftrightarrow x \in R.$$







$$ax^2 + bx + c < 0$$
$$\Leftrightarrow x \in R.$$

$$\Leftrightarrow \Leftrightarrow \Leftrightarrow x \in (-\infty; x_0) \cup (x_0; +\infty); \qquad x \in [x_1; x_2];$$

$$ax^2 + bx + c \ge 0 \qquad ax^2 + bx + c < 0$$

$$\Leftrightarrow x = x_0; \qquad \Leftrightarrow$$

2. Решите неравенства:

a)
$$x^2 + 9 > 0$$
;

$$\Gamma$$
) $x^2 < 25$;

ж)
$$(x+3)^2 > 4$$
;

$$(2x+4)(x-3)>0$$
;

M)
$$4x^2 \ge x$$
;

$$\Pi$$
) $x^2 - x < 12$;

T)
$$x^2 + 10x + 25 > 0$$
;

x)
$$x^2 + 10x + 30 \ge 0$$
;

III)
$$x^2 - x + 1 > 0$$
;

$$(4x-7)^2 > (7x-4)^2$$
;

6)
$$x^2 - 9 > 0$$
; B) $16 \le x^2$;

 $\Leftrightarrow x \in R$.

$$\pi$$
) $-2x^2 + 8 \le 0$; e) $3x^2 - 7 \le 0$;

a)
$$2v^2$$
 7

3)
$$9-(x-3)^2 \ge 0$$
;

K)
$$3x^2 - 5x > 0$$
; π) $x^2 \le 5x$;

$$\mathbf{K}) \ 3x - 3x > 0,$$

H)
$$2x^2 - 5x + 2 \ge 0$$
; o) $2x^2 - x - 3 < 0$;

n)
$$x^2 + x < 6$$
.

p)
$$x^2 + x \le 6$$
; c) $2x - 3x^2 + 1 \ge 0$;

y)
$$x^2 + 10x + 25 \le 0$$
; $(x^2 + 6x + 3 \le 0)$;

$$(\varphi) 3x^2 + 6x + 3 \le 0$$

X)
$$x^2 + 10x + 30 \ge 0$$
; II) $4x^2 + x - 5 < 0$; II) $x^2 - 4x + 4 > 0$;

$$\mathbf{q}$$
) $x^2 - 4x + 4 > 0$:

$$\coprod (x^2 + 2x + 8 < 0);$$

$$\mathbf{HO}) (7x+3)(3x+4) \ge (7x+3)(5x-4).$$

2.5 Решение рациональных неравенств методом интервалов

Для решения неравенств вида $f(x) \le 0$ применяется метод интервалов, который реализуется по следующему алгоритму:

- 1) найдите область определения функции f(x): (D(f));
- 2) найдите нули функции f(x): f(x) = 0;
- 3) найденные область определения и нули функции нанесите на числовую прямую;
- 4) определите знак f(x) на каждом из полученных интервалов;
- 5) сделайте вывод.
- 1. Равносильны ли неравенства:

a)
$$(x-1)(x-3) \ge 0$$
 и $\frac{x-1}{x-3} \ge 0$;

a)
$$(x-1)(x-3) \ge 0$$
 $\text{ M} \frac{x-1}{x-3} \ge 0$; 6) $\frac{2-3x}{x+3} \le 0$ $\text{ M} (2-3x)(x+3) \le 0$?

2. Решите неравенство:

a)
$$\frac{x-2}{x+1} \le 0;$$

$$6) \frac{3-x}{x+2} \le 0;$$

B)
$$(x+5)(x-3)(x-6) < 0$$
;

$$\Gamma$$
) $\frac{(x+2)(3-x)}{x+9} \ge 0$;

д)
$$\frac{4x^2+4x+1}{x} \ge 0$$
;

e)
$$(8-x)(1+x)^2(10-x)^3 \le 0$$
;

ж)
$$(27-x^3)(x^2-9) \ge 0$$
;

3)
$$(2x+1)(4x^2-1)^2(4x^2+4x+1)>0$$

3. Решите неравенство:

a)
$$\frac{-(x+4)^4}{x^2(x-4)^6} \ge 0$$
;

6)
$$x \le 3 - \frac{1}{x-1}$$
;

B)
$$\frac{5x+4}{3+x} - \frac{2+x}{1-x} \le 0$$
; г) $\frac{3}{x+5} - 2 \le 0$; д) $\frac{5}{1-2x} < 3$; e) $\frac{x+1}{x} \le 2$;

e)
$$\frac{x+1}{x} \le 2$$
;

$$\mathbb{K}$$
) $\frac{6}{5-2x} \ge 3$;

3)
$$\frac{1-2x-3x^2}{3x-x^2-5} > 0$$
;

и)
$$x^2(12+3x^2) \le 16(12+3x^2)$$
;

И)
$$x^2(12+3x^2) \le 16(12+3x^2)$$
;
К) $x^2(12-3x^2) \le 16(12-3x^2)$.

4. Решите систему неравенств:

a)
$$\begin{cases} (x-3x+2)^2 \le 0, \\ x^3 - x^2 > 3; \end{cases} \qquad 6) \begin{cases} 2(x-1) - 3(x-4) > x + 5, \\ \frac{3x-4}{x^2 + 4x + 4} \ge 0. \end{cases}$$

III. Проценты

3.1 Основные понятия и формулы

- 1) Процент величины одна сотая часть этой величины;
- 2) за 100 % принимают то число, с которым сравнивают;
- 3) **p** % от числа **a** равны $a \cdot \frac{p}{100} = p \cdot \frac{a}{100}$;
- 4) если число **a** составляет **p** % от числа **b**, то $b = \frac{a \cdot 100}{p}$;
- 5) если необходимо узнать, сколько процентов составляет число \boldsymbol{a} от числа \boldsymbol{b} , то $p = \frac{a}{b} \cdot 100 \%$;
- 6) если число \boldsymbol{a} увеличено на \boldsymbol{p} %, то оно увеличивается в $\left(1+\frac{p}{100}\right)$ раз, а если уменьшено на \boldsymbol{q} %, где $0 \le q \le 100$, то оно уменьшается в $\left(1-\frac{q}{100}\right)$ раз. При этом соответственно получаются числа $a\left(1+\frac{p}{100}\right)$ и $a\left(1-\frac{q}{100}\right)$;
- 7) если число \boldsymbol{a} увеличено на \boldsymbol{p} % n-раз, то получается число $a \left(1 + \frac{p}{100}\right)^n$;
- 8) если число \boldsymbol{a} больше числа \boldsymbol{b} на \boldsymbol{p} %, то $p = \frac{a-b}{b} \cdot 100\%$ или $b \cdot \left(1 + \frac{p}{100}\right) = a$;

- 9) если число \boldsymbol{b} меньше числа \boldsymbol{a} на \boldsymbol{p} %, то $p = \frac{a-b}{a} \cdot 100\%$ или $a \left(1 \frac{p}{100} \right) = b$.
- 1. Найдите 6 % от числа 130.
- 2. Найдите 15 % от наибольшего общего делителя двух чисел 18 и 42.
- 3. Найдите число, 5 % от которого равно 2.
- 4. Найдите число, 20 % от которого равны наименьшему общему кратному чисел 18 и 42.
- Увеличьте число 80 на 20 %.
- 6. Вкладчик положил в сбербанк 1000 руб. из расчета 3 % годовых. Каким будет его вклад через один год?
- 7. В классе 30 учеников, среди них 18 мальчиков. Сколько процентов от числа учеников составляют мальчики?
- 8. Призерами олимпиады по математике стало 48 учеников, что составило 12 % от числа участников. Сколько человек участвовало в олимпиаде?
- 9. Цена на товар:
 - **а)** была повышена на 24 % и составила 372 руб. Сколько стоил товар до повышения цены?
 - **б)** была снижена на 17 % и составила 249 руб. Сколько стоил товар до снижения цены?
- 10.В июне 1 кг помидоров стоил 80 руб. В июле помидоры подешевели на 15 %. Сколько рублей стоил 1 кг помидоров после снижения цены в июле?
- 11.Стоимость покупки с учетом трёхпроцентной скидки по дисконтной карте составила 1940 руб. Сколько бы пришлось заплатить за покупку при отсутствии дисконтной карты?

- 12. Железнодорожный билет для взрослого стоит 470 руб. Стоимость билета для школьника составляет 50 % от стоимости билета для взрослого. Группа состоит из 20 школьников и 4 взрослых. Сколько рублей стоят билеты на всю группу?
- 13. Цена на товар была повышена на 16 % и составила 348 руб. Сколько рублей стоил товар до повышения цены?
- 14. Цена на товар была повышена на 10 % и составила 462 руб. Сколько рублей стоил товар до повышения цены?
- 15. Цена на товар была снижена на 10 % и составила 2700 руб. Сколько рублей стоил товар до снижения цены?
- 16. Первоначально товар стоил:
 - **а)** 400 руб., а после снижения цен стал стоить 352 руб. На сколько процентов была снижена цена товара?
 - **б)** 600 руб., а после повышения цен стал стоить 678 руб. На сколько процентов была повышена цена товара?
- 17. Рубашка стоила 800 руб. После снижения цены она стала стоить 680 руб. На сколько процентов была снижена цена на рубашку?
- 18. Кроссовки стоили 750 руб. После повышения цены они стали стоить 900 руб. На сколько процентов была повышена цена на кроссовки?
- 19.В сентябре упаковка персиков весом в один килограмм стоит 120 руб. Сколько килограммов персиков сможет купить Олег на 1000 руб., если персики подорожают на 30 %?
- 20.Оптовая цена учебника 220 руб. Розничная цена на 20 % выше оптовой цены. Какое наибольшее число

- таких учебников можно купить по розничной цене на 9000 руб.?
- 21.Пара носков стоит 20 руб. Какое наибольшее число таких пар носков можно будет купить на 150 руб. во время распродажи, когда скидка составляет 20 %?
- 22. Магазин закупает пачки бумаги по оптовой цене 80 руб. за штуку и продает с наценкой 30 %. Какое наибольшее число пачек бумаги можно купить в этом магазине на 500 руб.?
- 23. Ручка стоит 40 руб. Какое наибольшее число таких ручек можно будет купить на 300 руб. после повышения цены на ручки на 10 %?
- 24. Банка краски стоит 160 руб. Какое наибольшее число таких банок можно купить на 1000 руб. во время распродажи, когда скидка составляет 25 %?
- 25. Шариковая ручка стоит 7 руб. При покупке более 50 ручек на всю покупку начинает действовать скидка 20 %. Сколько рублей нужно заплатить при покупке 120 ручек?
- 26. Тетрадь стоит 4 руб. Если покупатель покупает более 100 тетрадей, то магазин делает скидку 10 % от стоимости всей покупки. Представитель школы купил 400 тетрадей. Сколько рублей он заплатил за покупку?
- 27. Хозяин овощной лавки купил оптом на рынке 100 кг помидоров и заплатил 4000 руб. После продажи помидоров оказалось, что за время хранения в лавке 10 % помидоров испортилось, и хозяин не смог их продать. Остальные помидоры он продал по цене 50 руб. за килограмм. Какую прибыль он получил?
- 28. Налог на доходы составляет 13 % от заработной платы. После удержания налога на доходы Мария Гавриловна

- получила 11 745 руб. Сколько рублей составляет заработная плата Марии Гавриловны?
- 29. Налог на доходы составляет 13 % от заработной платы. Заработная плата Петра Ивановича равна 21 000 руб. Сколько рублей он получит после удержания налога на доходы?
- 30.Среди 12 000 жителей 70 % не интересуется футболом. Среди футбольных болельщиков 85 % смотрело по телевизору финал Лиги чемпионов. Сколько жителей города смотрело этот матч?
- 31.Клиент взял в банке кредит на сумму 24 000 руб. с годовой процентной ставкой 15 %. Он должен погашать кредит, внося в банк ежемесячно одинаковую сумму денег, чтобы через год выплатить всю сумму, взятую в кредит, вместе с процентами. Сколько рублей он должен вносить в банк ежемесячно?
- 32. Студент получил свой первый гонорар в размере 700 руб. за выполненный перевод. Он решил на все полученные деньги купить букет тюльпанов для своей учительницы английского языка. Какое наибольшее количество тюльпанов сможет купить студент, если удержанный у него налог на доходы составляет 13 % гонорара, тюльпаны стоят 60 руб. штука и букет должен состоять из нечетного числа цветов?
- 33.Себестоимость продукции:
 - а) выросла на 50 %. Во сколько раз она выросла?
 - б) снизилась на 50 %. Во сколько раз она снизилась?
- 34.Выпуск продукции:
 - **a)** вырос в 4 раза. На сколько процентов он увеличился?

- **б)** снизился в 4 раза. На сколько процентов он снизился?
- 35.В первый день со склада было отпущено 20 % имевшихся яблок. Во второй день 180 % от того количества яблок, которое было отпущено в первый день. В третий день оставшиеся 88 кг яблок. Сколько килограммов яблок было на складе первоначально?
- 36.В октябре 1 кг мандаринов стоил 80 руб., в ноябре мандарины подешевели на 25 %, а в декабре ещё на 10 %. Сколько рублей стоит 1 кг мандаринов после снижения цены в декабре?
- 37.Партия товара была продана за 864000 руб. Прибыль составила 8%. Какова себестоимость товара?
- 38. Коммерческое предприятие, продав товара на 5100 руб., понесло 15% убытка. Какова себестоимость этого товара?
- 39. Магазин продал книгу со скидкой в 10 % по сравнению с первоначально названной ценой и получил при этом 8 % прибыли. Сколько процентов прибыли предполагал получить магазин первоначально?
- 40. Приобретя пакет акций, банк рассчитывал получить после их продажи некоторый процент прибыли. Но, так как при установленной банком цене покупателей не нашлось, банк снизил цену на 10 %, и поэтому прибыль, полученная банком, составила 17 %. Какой процент прибыли рассчитывал получить банк?
- 41. Дневная норма ученика составляет 80 % от дневной нормы мастера. На сколько процентов дневная норма мастера больше дневной нормы ученика?
- 42. Футболка дешевле пальто на 90 %. На сколько процентов пальто дороже футболки?

- 43. Брюки дороже галстука на 32 % и дороже рубашки на 20 %. На сколько процентов рубашка дороже галстука?
- 44. Четыре рубашки дешевле куртки на 20 %. На сколько процентов шесть рубашек дороже куртки?
- 45.Василий Петрович собирается взять ссуду в коммерческом банке. Определите максимальную величину суммы (в руб.), которую Василий Петрович может взять у банка под 20 % годовых, если он хочет полностью расплатиться с банком в течение двух лет, выплачивая в конце каждого года не более чем 90000 руб.
- 46. Цена на товар была понижена на 10 %. На сколько процентов теперь её надо поднять, чтобы получить первоначальную?
- 47. Цена товара сначала увеличилась на 10 %, а затем уменьшилась на 25 % по сравнению с увеличенной ценой. В результате товар подешевел на 7 руб. по сравнению с его первоначальной ценой. Сколько стоил товар первоначально?
- 48. Цена некоторого товара была сначала повышена на 20 %, затем снижена на 400 руб. и, наконец, снова повышена еще на 30 % по отношению к предыдущему значению. Какова была первоначальная цена товара, если в результате повышение составило 4 %?
- 49. Некоторая сумма была помещена в банк. После первого года хранения проценты, начисленные на вклад, составили 150 руб. Владелец вклада снял со счёта 350 руб. После второго года хранения и начисления процентов, сумма на вкладе стала равной 920 руб. Сколько процентов начислялось по вкладу, если

- процентная ставка банка для первого и второго годов хранения была одинакова?
- 50.В понедельник акции компании **A** подорожали на некоторое число процентов, а во вторник подешевели на то же число процентов. В результате они стали стоить на 36 % дешевле, чем при открытии торгов в понедельник. На какое число процентов подорожали акции компании **A** в понедельник?
- 51. Сберегательный банк в конце каждого года начисляет 5 % к сумме, находящейся на счету. На сколько процентов увеличится первоначальный вклад в 2000 руб. через 2 года?
- 52. Цена музыкального центра в магазине уменьшается на одно и то же число процентов от предыдущей Определите, цены. на сколько процентов каждый уменьшалась ГОД цена выставленный музыкального центра, если, продажу за 10000 руб., он через два года был продан за 7225 руб.?
- 53. Найдите первоначальную сумму вклада (в руб.), если после истечения двух лет она выросла на 304,5 руб. при 3 % годовых.
- 54. Каков ежегодный процент по вкладу в банке, если вкладчик, положивший в банк 50000 руб., через четыре года получил на 23205 руб. больше?
- 55.Зимой цена на свеклу повысилась на 20 % по сравнению с осенью. На сколько процентов нужно уменьшить количество приобретаемой свеклы зимой, чтобы затраты на ее покупку увеличились на 2 % по сравнению с осенью?

3.2 Задачи на «концентрацию, сплавы и смеси»

Основные понятия и формулы

Основные допущения состоят в следующем:

- 1) все получающиеся сплавы или смеси однородны;
- 2) при слиянии двух растворов, имеющих объёмы V_1 и V_2 , получается смесь, объём который равен V_1 + V_2 ;
- 3) если \boldsymbol{a} кг некоторого вещества содержится в \boldsymbol{b} кг смеси (сплава, раствора), то отношение $\frac{a}{b}$ называется

концентрацией вещества, а $\frac{a}{b} \cdot 100 \%$ называется процентной концентрацией этого вещества в этой смеси.

- 56.Свежая клюква содержит 90 % влаги, а сушеная 12 %. Сколько килограммов сушеной клюквы получится из 10 кг свежей?
- 57. Виноград содержит 90 % влаги, а изюм 5 %. Сколько килограммов винограда требуется для получения 20 килограммов изюма?
- 58. Влажность сухой цементной смеси на складе составляет 18 %. Во время перевозки из-за дождей влажность смеси повысилась на 2 %. Найдите массу привезенной смеси, если со склада было отправлено 400 кг.
- 59.В бидон налили 4 литра молока трехпроцентной жирности и 6 литров молока шестипроцентной жирности. Сколько процентов составляет жирность молока в бидоне?
- 60. Какое количество воды нужно добавить в 1 литр 9 %-ого раствора уксуса, чтобы получить 3%-ный раствор?
- 61. Кусок сплава меди и цинка массой 36 кг содержит 45 % меди. Какую массу меди следует добавить к

- этому куску, чтобы получить сплав, содержащий 60% меди?
- 62. Найдите количество (в граммах) раствора соли четырехпроцентной концентрации, если известно, что после прибавления к нему 54 граммов раствора соли 9% концентрации получится 7% раствор соли.
- 63. Кусок первого сплава меди и олова весом 1 кг содержит 30 % меди. При сплавлении этого куска с некоторым количеством второго сплава меди и олова, содержащего 40 % олова, получился сплав, в котором содержание меди и олова относилось как 2:3. Сколько килограммов второго сплава было добавлено?
- 64. Смешав 30 %-ный и 60 %-ный растворы кислоты и добавив 10 кг чистой воды, получили 36 %-ный раствор кислоты. Если бы вместо 10 кг воды добавили 10 кг 50 %-ого раствора той же кислоты, то получили бы 41 %-ный раствор кислоты. Сколько килограммов 30 %-ого раствора использовали для получения смеси?

IV. Функции

4.1 Понятие числовой функции. Свойства функции

Пусть задано числовое множество X. Правило, сопоставляющее каждому числу x из множества X единственное действительное число y, называют **числовой функцией**, заданной на множестве X.

х- независимая переменная (аргумент);

у - зависимая переменная (функция).

Символическая запись функции имеет вид y = f(x)

Множество X называется областью определения функции у и обозначается D(y). E(y) - область (множество) значений функции у — множество всех значений переменной у, которые она принимает при всех допустимых значениях x.

Функция y = f(x) называется **четной**, если для любого значения x, взятого из области определения функции, значение -x также принадлежит области определения и выполняется равенство f(x) = f(-x).

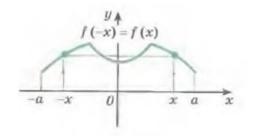


Рисунок 1 - График четной функции

Согласно определению, четная функция определена на множестве, симметричном относительно начала координат. График четной функции симметричен

относительно оси ординат (рис. 1).

Функция y = f(x) называется **нечетной**, если для любого значения x, взятого из области определения функции, значение -x также принадлежит области определения и выполняется равенство f(x) = -f(x).

График нечетной функции симметричен относительно начала координат (рис. 2).

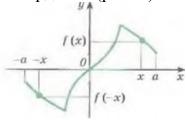


Рисунок 2 - График нечетной функции

При построении графиков четных и нечетных функций достаточно построить только правую ветвь графика — для положительных значений аргумента. Левая ветвь достраивается симметрично относительно оси *оуд*ля четной функции и кососимметрично (т. е. симметрично относительно начала координат) для нечетной.

Функция y=f(x) называется периодической с периодом $T \neq 0$, если при всех значениях x из области её определения выполняются равенства f(x-T)=f(x)=f(x+T).

Если T — период функции, то при любом $n \in \mathbb{Z} \setminus \{0\}$ число nT также является периодом функции.

Наименьший положительный период функции называется её основным периодом.

Сумма, разность, произведение и частное двух функций, имеющих период T, обладает тем же периодом.

Сумма п периодических функций с периодами

 $T_1, T_2, ..., T_n$ имеет период $T = HOK(T_1, T_2, ..., T_n)$. Если функция y = f(x) имеет период T, то функция y = Af(kx+b) имеет период $\frac{T}{|k|}$.

Нулем функции называется такое действительное значение x, при котором значение функции равно нулю.

Для того чтобы найти нули функции, следует решить уравнение f(x)=0. Действительные корни этого уравнения являются нулями функции y=f(x),и обратно. Нули функции представляют собой абсциссы точек, в которых график этой функции либо пересекает ось абсцисс, либо касается ее. Например, функция $y=x^3-3x$ имеет нули в точках x=0, $x_2=-\sqrt{3}$, $x_3=\sqrt{3}$, а функция $y=\ln(x-1)$ имеет нуль в точке x=2.

Функция может и не иметь нулей. Такова, например, функция $y=a^x$

Область определения функции y = f(x) совпадает с ОДЗ (областью допустимых значений) правой части f(x), т.е. с множеством всех значений x, при которых f(x) вычисляется.

Пример: Найти область определения функции $y = \sqrt{1 - x^2}$

Решение: Первая часть вычисляется при всех значениях x, для которых подкоренное выражение неотрицательно. Поэтому область определения D(y) будет найдена из условия $1-x^2 \ge 0$. Решая это неравенство, получаем $-1 \le x \le 1$, т.е. D(y) = [-1;1]

При анализе функции полезно проверить, обладает ли она свойством четности или нечетности. Наличие этих свойств позволяет упростить построение графика

функции. Достаточно построить график функции для $x \ge 0$. Тогда для четной функции часть графика для $x \le 0$ получается симметричным отображением построенного графика относительно оси Оу, а для нечетной — относительно начала координат.

Пример. Выяснить, обладают ли данные функции свойством четности или нечетности:

a)
$$y = \sqrt[3]{(x+1)^2 + \sqrt[3]{(x-1)^2}}$$
 6) $y = |x+1| - |x-1|$.

Решение:

a)
$$y(-x) = \sqrt[3]{(-x+1)^2} + \sqrt[3]{(-x-1)^2} = \sqrt[3]{(x-1)^2} + \sqrt[3]{(x+1)^2} = y(x)$$
.

Итак, y(-x) = y(x), следовательно, функция является четной.

б)

y(-x)=|-x+1|-|-x-1|=|-(x-1)|-|-(x+1)|=|x-1|-|x+1|=-(|x+1|-|x-1|)=-y(x), т.е. y(-x)=-y(x) и, следовательно, функция y(x) является нечетной. Здесь использовано свойство модуля (абсолютной величины) числа: |-a|=|a|.

Монотонность функции. Переменную величину называют **монотонной**, если она изменяется только в одном направлении, т.е. либо только возрастает, либо только убывает. Очевидно, что движение точки x в сторону положительного направления оси абсцисс является монотонно возрастающим, а в противоположную сторону - монотонно убывающим.

Функция y = f(x) называется **монотонно возрастающей** на интервале (a, b), если для любых x_1 , и x_2 , принадлежащих этому интервалу, из неравенства $x_2 > x_1$, следует неравенство $f(x_2) > f(x_1)$ (рис. 3a).

Функция y=f(x) называется **монотонно убывающей** на интервале (a, b), если для любых x_1 и x_2 , принадлежащих этому интервалу, из неравенства $x_2 > x_1$,

следует неравенство $f(x_2) < f(x_1)$ (рис. 36).

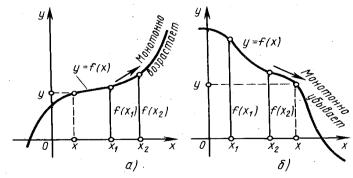


Рисунок 3 - Графики монотонно возрастающей и монотонно убывающей функций.

Естественно, что интервал (a, b) предполагается взятым из области определения функции.

Выпуклость функции. Говорят, что функция y = f(x) выпукла вверх в точке x_0 , если существует окрестность точки x_0 такая, что для всех ее точек x касательная к графику функции в точке $M_0(x_0, y_0)$ лежит выше графика (рис. 4а). Говорят, что функция y = f(x) выпукла вниз в точке x_0 , если существует окрестность точки x_0 такая, что для всех ее точек x касательная к графику функции в точке $M_0(x_0; y_0)$ лежит ниже графика (рис. 4б).

Если на некотором промежутке (a; b) все касательные к графику функции y = f(x) лежат выше (соответственно ниже) самого графика, то на данном промежутке функция выпукла вверх (соответственно выпукла вниз).

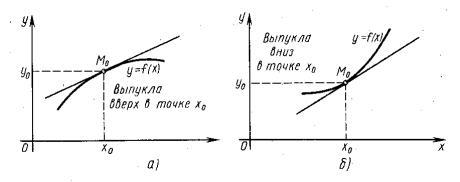


Рисунок 4 - Графики выпуклой функции

1. Докажите, что функции являются четными.

$$f(x) = 3x^2 + x^4$$
;
 $f(x) = 4x^6 - x^2$

2. Докажите, что функции являются нечетными

$$f(x) = x^2(2x - x^3)$$

$$f(x) = x(5 - x^2)$$

4.2 Преобразование графиков

Пусть отображение плоскости ОХҮ в себя переводит точку с координатами (x, y) в точку (x', y') (координаты x', y' являются функциями от x и y). Линия, заданная уравнением F(x,y) = 0, при таком отображении переходит в линию с уравнением F(x', y') = 0. В частности, график y = f(x) преобразуется в линию, заданную уравнением y' = f(x').

Рассмотрим, как преобразуется график y = f(x) при некоторых простых отображениях плоскости ОХУ в себя. В первом столбце приведенной ниже таблицы задано отображение плоскости ОХУ, во втором столбце

дано новое уравнение графика y = f(x) и описано

соответствующее преобразование этого графика.

Отображение ОХҮ	Преобразование				
•	графика				
x' = x - a, y' = y.	y = f(x - a).				
Параллельный перенос	Параллельный перенос				
(сдвиг) плоскости вдоль оси	графика оси ОХ на a				
ОХ на a единиц влево при	единиц влево при а<0 и				
a>0 и вправо при a<0.	вправо при а>0				
x' = x, y' = y - b.	y = f(x) + b				
Параллельный перенос	Параллельный перенос				
(сдвиг) плоскости вдоль оси	графика вдоль оси ОҮ на				
ОҮ на b единиц вниз при	b единиц вниз при b<0 и				
b>0 и вверх при b<0.	вверх при b>0.				
x' = x - a, y' = y - b.	y = f(x - a) + b.				
Параллельный перенос	Параллельный перенос				
(сдвиг) плоскости,	графика (линии) вдоль оси				
переводящий начало	ОХ на a единиц и вдоль				
координат в точку (-a, -b).	оси ОҮ на b единиц.				
$\mathbf{x}' = -\mathbf{x}, \mathbf{y}' = \mathbf{y}.$	y = f(-x).				
Отображение, переводящее	Симметричное				
каждую точку в точку,	отображение графика				
симметричную	относительно оси ОҮ.				
относительно оси ОҮ.					
Симметрия относительно					
оси ОҮ.					
x' = x, y' = -y.	y = -f(x).				
Симметрия относительно	Симметричное				
оси ОХ.	отображение графика				
	относительно оси ОХ.				

x' = -x, y' = -y.	y = -f(-x).
Центральная симметрия	Симметричное
относительно т.(0,0)начала	отображение графика
координат.	относительно точки $(0,0)$.
x'=y, y'=x.	x = f(y).
Симметрия относительно	Симметричное
прямой $x = y$ - биссектрисы	отображение графика
первого и третьего	относительно прямой у=х
координатных углов.	
x' = kx, y' = y.	y = f(kx).
Растяжение вдоль оси OX.	При k>1 график
Изменение масштаба по оси	сжимается с
OX.	коэффициентом k вдоль
	оси ОХ, при 0 <k<1 td="" график<=""></k<1>
	растягивается с
	коэффициентом k^{-1} вдоль
	оси ОХ.
1, 1, 1	y = kf(x)
$x' = x, y' = \frac{1}{k}y.$	При k>1 график
Сжатие вдоль оси ОҮ.	растягивается с
Изменение масштаба по оси	коэффициентом к вдоль
OY.	оси ОҮ, при 0 <k<1 td="" график<=""></k<1>
	сжимается с
	коэффициентом k^{-1} вдоль
	оси ОҮ.
x' = x , y' = y.	y = f(x).
Точки правой	Часть графика, лежащая
полуплоскости переходят в	левее оси ОҮ, стирается.
себя, точки левее оси ОУ	График в правой
переходят в симметричную	
относительно оси ОҮ точку.	без изменений и

отображается симметр					
	относительно оси ОҮ.				
x' = x, y' = y.	y = f(x) .				
Отображение переводит	Часть графика, лежащая в				
каждую точку верхней	верхней полуплоскости,				
полуплоскости в себя или в	остается неизменной,				
симметричную	часть графика, которая				
относительно оси ОХ точку.	лежит ниже оси ОX,				
	отображается				
	симметрично				
	относительно оси ОХ.				
x' = x, y' = y .	y = f(x).				
Точки верхней	Часть графика ниже оси				
полуплоскости переходят в	ОХ стирается, оставшаяся				
себя, точки ниже оси ОХ	часть графика остается				
переходят в симметричные	неизменной и отражается				
относительно оси ОX точки.	симметрично				
	относительно оси ОХ.				
x' = x, y' = y .	y = f(x) .				
Отображение переводит	График остается				
каждую точку плоскости в	неизменным и				
себя или в симметричную	отображается				
относительно оси ОХ точку.	симметрично				
	относительно оси ОХ.				

3. Функция y = f(x) задана графически на [-3,4]. Для каждой из указанных функций постройте их графики и укажите D(y) и E(y). a) y = f(x+1); 6) y = f(x) - 2; b) y = f(-3x);

a)
$$y = f(x + 1)$$
;

6)
$$v = f(x) - 2$$
:

B)
$$v = f(-3x)$$
;

$$\Gamma$$
) $\nu = -f(x)$;

г)
$$y = -f(x)$$
; д) $y = 2f(x+1)$; e) $y = f(1-x)$;

e)
$$y = f(1 - x)$$
:

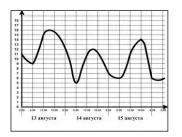
ж)
$$|y| = f(x)$$
; з) $y = f(|x|)$; и) $y = |f(x)|$.

$$y = f(|x|)$$

u)
$$y = |f(x)|$$
.

4.3 Задачи с графическим условием

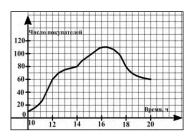
4. На графике показано изменение температуры воздуха на протяжении трёх суток, начиная с 0 часов 13 августа. На оси абсцисс отмечается время суток в часах, на оси ординат — значение температуры в градусах. Определите по графику наибольшую температуру



воздуха 15 августа. Ответ дайте с точностью до одного градуса.

5. На рисунке показан график изменения давления в паровой турбине. Сколько минут давление было больше 3 бар?

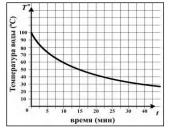
6. В торговом павильоне ярмарки установлен счетчик числа покупателей. Его показания поступают в блок автоматического управления вентиляцией. Автомат включает вентиляцию, когда число



покупателей увеличивается до 80, и выключает ее, когда число покупателей уменьшится до 80. На рисунке показано изменение числа покупателей в течение одного рабочего дня. Определите, сколько часов в этот день вентиляция была включена.

7. Воду в чайнике вскипятили и оставили охлаждаться.

Изменение температуры воды через каждые 5 мин показано на графике. Через сколько минут температура понизилась на 40°?

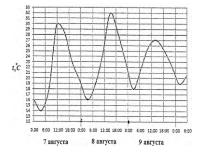


8. Турист собрался в поход. В походе он сделал два привала и после второго привала вернулся на турбазу. На рисунке изображён график движения туриста (по горизонтальной оси откладывается время t в часах, по вертикальной — расстояние s от турбазы в километрах). Используя график, ответьте на вопросы:

- 1) Сколько времени турист потратил на все привалы?
- 2) С какой скоростью (в км/ч) он шёл от первого до второго привала?
- 3) Какова средняя скорость туриста за всё время движения (время на привалы не учитывать)?
- 9. На рисунке показано изменение

температуры воздуха на протяжении трех суток. По горизонтали указывается дата и время суток, по вертикали – значение температуры в градусах Цельсия.

Определите по рисунку разность между наибольшей и наименьшей температурами воздуха 8 августа. Ответ дайте в градусах Цельсия.



V. Тригонометрия

5.1 Понятие тригонометрической окружности

Тригонометрической (числовой) окружностью называется окружность с центром в точке O (0;0) и радиусом R=1, обладающая свойствами:

- а) начало отчета совпадает с точкой с координатами (1;0);
- б) положительное направление направление от точки (1;0) против часовой стрелки, отрицательное по часовой стрелке;
- в) единица измерения совпадает с выбранным масштабом на координатных осях.

Для изображения точки, соответствующей действительному числу t на тригонометрической окружности, следует отложить дугу длинной t от точки (1;0) против или по часовой стрелке в зависимости от знака t.

5.2 Тригонометрические выражения

Синусом угла (действительного числа) α называется ордината точки P, соответствующей углу (числу) α на тригонометрической окружности (sin $\alpha = y_p$; $-1 \le y_p \le 1$).

Косинусом угла (действительного числа) α называется абсцисса точки P, соответствующей углу (числу) α на тригонометрической окружности ($\cos \alpha = x_P$; $-1 \le x_P \le 1$).

Тангенсом угла (действительного числа) α называется отношение $\sin \alpha$ к $\cos \alpha$ $\cos \alpha \neq 0, \alpha \neq \frac{\pi}{2} + \pi n, n \in \mathbb{Z}$

Числовая прямая x=1, сонаправленная с осью ОУ, является осью тангенсов $(tg\alpha=y_{\rm M}; -\infty < y_{\rm M} < +\infty)$.

Котангенсом угла (действительного числа) α называется отношение $\cos \alpha$ к $\sin \alpha$ $\left(ctg\alpha = \frac{\cos \alpha}{\sin \alpha}; \sin \alpha \neq 0, \alpha \neq \pi + \pi \text{n}, n \in Z\right)$.

Числовая прямая y = 1, сонаправленная с осью ОХ, является осью котангенсов $(ctg\alpha = x_{\rm M}; -\infty < x_{\rm M} < +\infty)$.

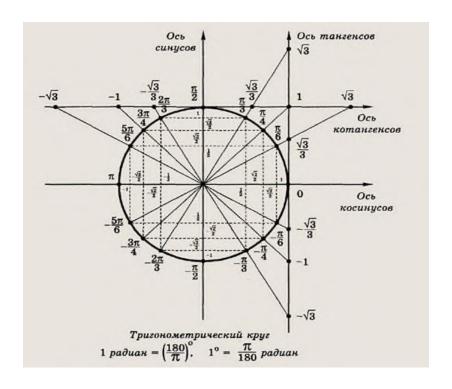


Рисунок 1 – Тригонометрическая окружность

Радианное измерение углов

Определение. Один радиан равен центральному углу окружности, длина дуги которого равна радиусу этой окружности.

1 радиан =
$$\frac{180^{0}}{\pi} \approx 57^{0}17^{\circ}45^{\circ}$$
.
 $1^{0} = \frac{\pi}{180}$ радиана $\approx 0,017453$ радиана.

Углы в градусах	φ°	30°	45°	60°	90°	180°	270°	360°
Углы в	π . ω°	π	π	π	π	7.	3	2т
радианах	180° Ψ	6	4	3	2	π	2"	2π

1. Выразите в радианной мере величины углов:

$$36^{\circ}$$
, 120° , 310° , 150° , 216° , 72°

2. Выразите в градусной мере величины углов:

$$\frac{2\pi}{5}$$
, $\frac{3\pi}{4}$, $-\frac{\pi}{9}$, $\frac{5\pi}{4}$, $\frac{3\pi}{2}$, $-\frac{7\pi}{12}$

Значения тригонометрических выражений для некоторых углов

α	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π	$\frac{3}{2}\pi$
$\sin \alpha$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	0	-1
cosα	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	-1	0
$tg \alpha$	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	_	0	_
$\operatorname{ctg} \alpha$	-	$\sqrt{3}$	1	$\frac{\sqrt{3}}{3}$	0	-	0

3. Вычислите:

a)
$$ctg(\frac{3\pi}{4}) - \cos\frac{\pi}{3}$$
;

6)
$$36\sqrt{6} \cdot tg \frac{\pi}{6} \cdot \sin \frac{\pi}{4}$$
;

B)
$$2\cos\frac{\pi}{6} + \sin\frac{\pi}{4} - tg\frac{\pi}{3}$$
;

$$\Gamma$$
) $24\sqrt{2}\cos\left(-\frac{\pi}{4}\right)\sin\left(-\frac{\pi}{4}\right)$;

e)
$$37\sqrt{2}\cos\left(-\frac{\pi}{4}\right)\sin\left(-\frac{\pi}{6}\right)$$
;

ж)
$$34\sqrt{3}\cos\left(-\frac{\pi}{6}\right)\sin\left(-\frac{\pi}{2}\right);$$

3)
$$2\sin(-\frac{\pi}{4})\cdot\cos\frac{2\pi}{3} + tg\frac{3\pi}{4}\cdot\cos\frac{3\pi}{4}$$
;

и)
$$\frac{\sqrt{\sqrt{2}}}{71}\cos\frac{\pi}{6}\cdot\cos\frac{\pi}{4}\cdot\cos\frac{\pi}{3}\cdot\cos\frac{\pi}{2}$$
.

5.3 Тригонометрические функции

Определение: Числовые функции, заданные формулами $y = \sin x$ и $y = \cos x$, называются соответственно синусом и косинусом.

Область определения этих функций - множество всех действительных чисел. Областью значений функций синус и косинус является отрезок [-1; 1], поскольку и ординаты, и абсциссы точек единичной окружности принимают все значения от -1 до 1. $D(\sin) = D(\cos) = R$; $E(\sin) = E(\cos) = [-1; 1]$.

Для любого х справедливы равенства:

- 1) $\sin(-x) = -\sin x$, $\cos(-x) = \cos x$;
- 2) $\sin(x + 2\pi n) = \sin x, \cos(x + 2\pi n) = \cos x$
- (n произвольное целое число).

Основной период функций $y=\sin x$ и $y=\cos x$ равен 2π . Основной период функций $y=A\cdot\sin(mx+n)$ и

$$y = A \cdot \cos(mx + n)$$
 находится по формуле $T = \frac{2\pi}{|m|}$.

График синуса называется **синусоидой**. Отрезок [-1; 1] оси ординат, с помощью которого мы находили значения синуса, иногда называют линией синусов (см. рис. 2-3).

Значение косинуса в произвольной точке x_0 равно значению синуса в точке $x_0 + \frac{\pi}{2}$. Это означает, что график косинуса получается из графика синуса с помощью параллельного переноса на расстояние $\frac{\pi}{2}$ в отрицательном направлении оси Ox. Поэтому график функции $y = \cos x$ также является синусоидой.

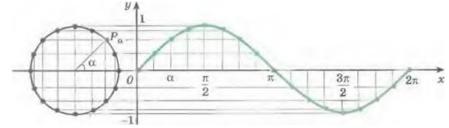


Рисунок 2 – Построение графика y=sinx

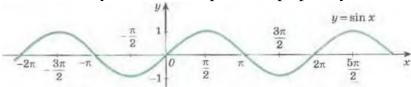


Рисунок 3 – График функции y=sinx

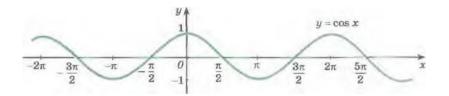


Рисунок 4 – График функции y=cosx

Определение: Числовые функции, заданные формулами y = tgx и y = ctgx, называют соответственно **тангенсом** и **котангенсом** (обозначают tg и ctg).

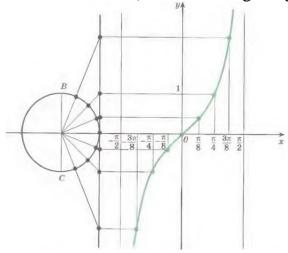


Рисунок 5 – Построение графика y=tgx

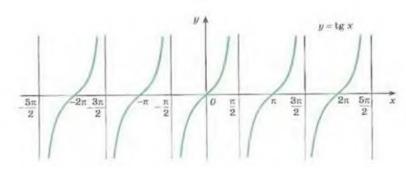


Рисунок 6 – График функции y=tgx

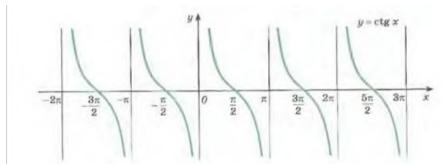


Рисунок 6 — График функции у=ctgx Основной период функций y = tgx и y = ctgx равен π .

Основной период функций $y = A \cdot tg(mx + n)$ и $y = A \cdot ctg(mx + n)$ находится по формуле $T = \frac{\pi}{|m|}$. Если функция $f(x) = f_1(x) + f_2(x) + ... + f_n(x)$, где функция $f_1(x), f_2(x), ..., f_n(x)$ – периодические с периодами, соответственно равными $T_1, T_2, ..., T_n$, то функция f(x) является периодической с периодом $T = HOK(T_1, T_2, ..., T_n)$.

4. Найдите значение функции:

а)
$$y = 4\sin(x - \frac{\pi}{3}) - 1$$
 при $x = \frac{\pi}{2}$;

б)
$$y = 2\sin(x - \frac{\pi}{6}) + \cos x$$
 при $x = \frac{\pi}{3}$;

в)
$$y = 31 \cdot ctg(x - \frac{\pi}{3}) - 1$$
 при $x = \frac{5\pi}{6}$;

$$\Gamma$$
) $y = 2tg(x + \frac{\pi}{6}) + 1$ при $x = \frac{5\pi}{6}$.

5. Постройте график функции:

B)
$$y = -3\cos x + 1$$
; Γ) $y = 2\cos(-x)$;

$$\mu$$
д) $y = \cos 4x$;

e)
$$y = tg(-x)$$
;

ж)
$$y = \frac{|\cos x|}{\cos x}$$
;

3)
$$y = tg \frac{x}{2} \cdot ctg \frac{x}{2}$$
;

$$\Pi) y = |\cos^2 x - \sin^2 x|.$$

- 6. Найдите множество значений функции:
- а) $y = \cos x$ на отрезках $[45\circ;60\circ], [-60\circ;45\circ];$

б)
$$y = \sin x$$
 на отрезках $[30\circ;360\circ], \left[-\frac{\pi}{6};\frac{\pi}{3}\right], \left[\frac{\pi}{6};\frac{2\pi}{3}\right];$

- 7. Найдите наименьшее значение функции $y = 5 \cos x$.
- 8. Найдите наибольшее значение функции $y = 7 \sin 2x$.
- 9. Найдите наименьшее значение функции $y = 1 + 2\cos 3x$.
- 10. Исследуйте функцию на чётность:

a)
$$y = \sin(3x^2)$$
;

$$\delta) \quad y = x \cdot \sin x;$$

$$\mathbf{B)} \ \ y = x^3 \cos x;$$

$$\Gamma$$
) $y = x^2 \cos 4x$;

д)
$$y = ctg^2 \frac{x}{2}$$
;

e)
$$y = \sin^2 x + 1$$
;

ж)
$$y = 5\cos^3 x$$
;

3)
$$y = x - \sin 2x$$
;

5.4 Формулы приведения

Формулы приведения служат для преобразования тригонометрических функций с аргументами $\frac{\pi n}{2} \pm \alpha, n \in \mathbb{Z}$ по следующему правилу:

- 1) название функции сохраняется, если $n = 2k, k \in \mathbb{Z}$ (т.е., если n -чётное) и меняется на **кофункцию** ($\sin \leftrightarrow \cos, tg \leftrightarrow ctg$), если $n = 2k+1, k \in \mathbb{Z}$ (т.е., если n -нечетное);
- 2) знак пред приведённой функцией совпадает со знаком приводимой функции в предположении, что α острый угол.

При этом прибавление угла α происходит против часовой стрелки, а вычитание – по часовой стрелке.

Например:

$$\cos(\pi - \alpha) = -\cos\alpha$$

$$\sin\left(\frac{3\pi}{2} + 10\alpha\right) = -\cos 10\alpha$$

Если при решении задачи надо поменять название функции, удобнее пользоваться аргументом $\left(\frac{\pi}{2} - \alpha\right)$,

то есть

$$\sin \alpha = \cos \left(\frac{\pi}{2} - \alpha\right);$$
 $\cos \alpha = \sin \left(\frac{\pi}{2} - \alpha\right);$ $tg\alpha = ctg\left(\frac{\pi}{2} - \alpha\right);$ $ctg\alpha = tg\left(\frac{\pi}{2} - \alpha\right)$

11. Найдите значение выражения:

a)
$$5\sin(\pi + \alpha) + \cos\frac{\pi}{2}$$
, если $\sin\alpha = 0.5$;

б)
$$\sqrt{6}tg\alpha \cdot \cos(\pi + \alpha)$$
, если $\sin \alpha = \frac{\sqrt{6}}{4}$;

12. Вычислите:

$$\kappa$$
) $\sin\left(\frac{149\pi}{6}\right)$; π). $tg\left(-\frac{345\pi}{3}\right)$; m) $\cos\left(\frac{347\pi}{6}\right)$;

H)
$$11. ctg\left(-\frac{199\pi}{6}\right)$$
; o) $\cos\left(-\frac{1111\pi}{3}\right)$.

5.5 Тождественные преобразования тригонометрических выражений

Основные тригонометрические тождества

$$\sin^2 x + \cos^2 x = 1;$$
 $\operatorname{tg} x \cdot \operatorname{ctg} x = 1;$ $1 + \operatorname{tg}^2 x = \frac{1}{\cos^2 x};$ $1 + \operatorname{ctg}^2 x = \frac{1}{\sin^2 x}.$

Формулы суммы и разности аргументов

$$\sin(x \pm y) = \sin x \cdot \cos y \pm \cos x \cdot \sin y;$$

$$\cos(x \pm y) = \cos x \cdot \cos y \mp \sin x \cdot \sin y;$$

$$tg(x \pm y) = \frac{tg x \pm tg y}{1 \mp tg x \cdot tg y}.$$

Формулы двойного и тройного аргументов

$$\cos 2x = \cos^2 x - \sin^2 x = 1 - 2\sin^2 x = 2\cos^2 x - 1;$$

$$\sin 2x = 2\sin x \cdot \cos x;$$

$$\sin^2 x = \frac{1 - \cos 2x}{2};$$

$$\cos^2 x = \frac{1 + \cos 2x}{2};$$

$$^* \sin 3x = 3\sin x - 4\sin^3 x;$$

$$^* \cos 3x = 4\cos^3 x - 3\cos x;$$

$$\tan 2x = \frac{2\tan x}{1 - \tan^2 x};$$

$$^* \tan 3x = \frac{3\tan x - 4\sin^3 x}{1 - 3\tan^2 x}.$$

Выражение тригонометрических функций через тангенс половинного угла

Если
$$x \neq \pi + 2\pi k, k \in Z$$
, то
$$\sin x = \frac{2 \operatorname{tg}_{\frac{\pi}{2}}^{x}}{1 + \operatorname{tg}^{2} \frac{\pi}{2}}; \qquad \cos x = \frac{1 - \operatorname{tg}^{2} \frac{\pi}{2}}{1 + \operatorname{tg}^{2} \frac{\pi}{2}}.$$

Преобразование суммы и разности тригонометрических функций в произведение

$$sinx \pm siny = 2sin \frac{x \pm y}{2}cos \frac{x \mp y}{2}
cosx + cosy = 2cos \frac{x + y}{2}cos \frac{x - y}{2}
cosx - cosy = -2sin \frac{x + y}{2}sin \frac{x - y}{2}
tgx \pm tgy = \frac{sin(x \pm y)}{cosxcosy}$$

Преобразование произведения тригонометрических функций в сумму

$$\sin x \cdot \sin y = \frac{1}{2}(\cos(x-y) - \cos(x+y));$$

$$\cos x \cdot \cos y = \frac{1}{2}(\cos(x-y) + \cos(x+y));$$

$$\sin x \cdot \cos y = \frac{1}{2}(\sin(x-y) + \sin(x+y)).$$

13. Найдите
$$\cos \alpha$$
, если $\sin \alpha = -\frac{\sqrt{3}}{2}u\alpha \in (\pi; \frac{3\pi}{2}).$

14. Найдите
$$\sin \alpha$$
, если $\cos \alpha = \frac{2\sqrt{6}}{5}u\alpha \in (0; \frac{\pi}{2})$.

15. Найдите
$$tg\alpha$$
, если $\cos\alpha = -\frac{1}{\sqrt{10}}u\alpha \in (\frac{\pi}{2};\pi)$.

16. Найдите
$$tg\alpha$$
, если $\sin\alpha = -\frac{1}{\sqrt{26}}u\alpha \in (\frac{3\pi}{2};2\pi).$

17. Дано:
$$\cos \beta = 0.8$$
 и $\frac{3\pi}{2} < \beta < 2\pi$. Найти: $\sin \beta$.

18. Дано:
$$tg\beta = \frac{7}{24}$$
 и $180^{\circ} < \beta < 270^{\circ}$. Найти: $\cos \beta$.

19. Дано:
$$ctg\beta = -1\frac{1}{3}$$
 и $\frac{3\pi}{2} < \beta < 2\pi$. Найти: $\cos 2\beta$.

20. Дано:
$$\cos \alpha = -0.6$$
, $\frac{\pi}{2} < \alpha < \pi$, $\sin \beta = -0.6$, $\frac{3\pi}{2} < \beta < 2\pi$.

Найти: $sin(\alpha - \beta)$.

21. Найдите значение выражения:

- a) $3\sin^2 \beta + 10 + 3\cos^2 \beta$;
- 6) 16 6 sin² β 6 cos² β.
- 22. Вычислите:

a)
$$\cos^2 15^\circ + \cos^2 75^\circ$$
;

B)
$$\frac{\sin 90 \circ \cdot \cos 60 \circ + \sin 30 \circ}{\cos 180 \circ \cdot \sin 270 \circ};$$

$$\mu$$
Д) $\frac{\sin 35 \circ \cdot \cos 175 \circ \cdot \sin 180 \circ}{\cos 15 \circ + \sin 40 \circ}$;

ж)16cos20° cos40° cos80°;

23. Вычислите:

a)
$$\frac{36 \sin 102^{\circ} \cos 102^{\circ}}{\sin 204^{\circ}}$$
;

6)
$$\frac{17(\sin^2 12^\circ - \cos^2 12^\circ)}{\cos 24^\circ}$$
;

B)
$$\frac{19 \sin 50^{\circ}}{\sin 25^{\circ} \cos 25^{\circ}}$$
;

$$\Gamma) \frac{13 \sin 22^{\circ}}{\sin 11^{\circ} \sin 79^{\circ}};$$

e)
$$\frac{-10 \sin 132^{\circ}}{\cos 66^{\circ} \cos 24^{\circ}}$$
.

24. Найти значения выражений:

6) $\cos^2 15^{\circ} - \sin^2 15^{\circ}$;

6) $\cos^2 15^{\circ} - \sin^2 75^{\circ}$;

3) $\sin 54^\circ \sin 18^\circ$

 $\Gamma) \; \frac{ctg 90 \circ \cdot \cos 50 \circ + \cos 60 \circ}{\cos 0 \circ \cdot tg \, 45 \circ};$

e) $\frac{tg112 \circ \cdot ctg270 \circ \cdot tg160 \circ}{\cos 80 \circ \cdot \sin 27 \circ}$;

B)
$$2\sin^2 22.5^{\circ}$$
;

 Γ) $2\cos^2 22.5^{\circ}$.

$$(\pi/2) \frac{2\sin 41^{\circ} + \cos 49^{\circ}}{\sin 79^{\circ} - \sin 19^{\circ}};$$

e) $4(\sin 49^{\circ} \sin 11^{\circ} + \cos^2 71^{\circ})$.

25. Найдите значение выражения:

$$27 \sin \alpha \cos \alpha$$
, если $\sin \alpha - \cos \alpha = \frac{1}{3}$.

26. Найдите значение выражения:

81(
$$\sin^3 \alpha + \cos^3 \alpha$$
), если $\sin \alpha + \cos \alpha = \frac{1}{3}$.

27. Найдите значение выражения:

$$\frac{44(6\sin\beta - 7\cos\beta + 1)}{8\sin\beta + 9\cos\beta - 1}, \text{ если } tg \frac{\beta}{2} = 4.$$

28 Найдите значение выражения $(\sin^2 \frac{x}{2} - \cos^2 \frac{x}{2}) \cdot \sqrt{3}$,

при
$$x = \frac{5\pi}{6}$$
.

5.6 Обратные тригонометрические функции

Арксинусом числа $x \in [-1;1]$ называется число (угол, дуга) $y \in \left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$, синус которого равен **х.** Обозначается $\arcsin x = y$ и $\sin (\arcsin x) = x$ при $x \in [-1;1]$.

$$y \stackrel{\text{def}}{=} \arcsin x \Leftrightarrow x = \sin y$$
 и $-\frac{\pi}{2} \leqslant y \leqslant \frac{\pi}{2}$;

Арккосинусом числа $x \in [-1;1]$ называется число (угол, дуга) $y \in [0;\pi]$, косинус которого равен **х.** Обозначается arcos x = y и cos(arccos x) = x при $x \in [-1;1]$.

$$y \stackrel{\text{def}}{=} \arccos x \Leftrightarrow x = \cos y$$
 и $0 \leqslant y \leqslant \pi$;

Арктангенсом числа $x \in R$ называется число (угол, дуга) $y \in \left[-\frac{\pi}{2}; \frac{\pi}{2} \right]$, тангенс которого равен **х.** Обозначается arctg x = y и tg(arctgx) = x при всех $x \in R$.

$$y \stackrel{\mathrm{def}}{=} \mathrm{arctg}\, x \Leftrightarrow x = \mathrm{tg}\, y$$
 и $-\frac{\pi}{2} < y < \frac{\pi}{2};$

Арккотангенсом числа $x \in R$ называется число (угол, дуга) $y \in [0; \pi]$, котангенс которого равен **х.** Обозначается arcctg x = y и ctg(arcctgx) = x при все $x \in R$.

$$y \stackrel{\text{def}}{=} \operatorname{arcctg} x \Leftrightarrow x = \operatorname{ctg} y$$
 и $0 < y < \pi$.

Свойства обратных тригонометрических функций

$$D(\arcsin x) = [-1; 1]; \ E(\arcsin x) = \left[-\frac{\pi}{2}; \frac{\pi}{2}\right];$$

$$D(\arccos x) = [-1; 1]; \ E(\arccos x) = [0; \pi];$$

$$\arcsin(-x) = -\arcsin x; \arccos(-x) = \pi - \arccos x;$$

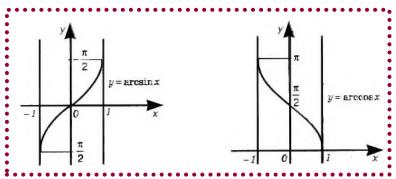


Рисунок $1 - \Gamma$ рафики функций $y = \arcsin x$, $y = \arccos x$

$$\begin{split} D(\arctan x) &= R; \ E(\arctan x) = \left(-\frac{\pi}{2}; \frac{\pi}{2}\right); \\ D(\operatorname{arcctg} x) &= R; \ E(\operatorname{arcctg} x) = \left(0; \pi\right); \\ \operatorname{arctg}(-x) &= -\arctan x; \operatorname{arcctg}(-x) = \pi - \operatorname{arcctg} x; \end{split}$$

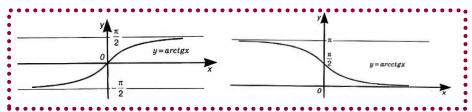


Рисунок $2 - \Gamma$ рафики функций y = arctg x, $y = \operatorname{arcctg} x$

29.Вычислите:

- a) $5\arcsin(\cos\frac{\pi}{2})$;
- 6) $\sqrt{3}\cos(\arcsin\frac{1}{2})$;
- B) $\sqrt{2}\sin(\arccos(-\frac{\sqrt{2}}{2}))$; Γ) $\frac{8}{\pi}arcctg(\cos\pi)$.

30. Найдите значение выражения:

- a) $tg^2(\arccos(-\frac{1}{4}))$;
- 6) $(tg(\arcsin\frac{1}{3}))^{-2}$.

31. Вычислите значение выражений:

- a) $\sin(\arccos\frac{4}{5})$;
- 6) $(tg(6\arccos(-\frac{\sqrt{3}}{2}) + \frac{23\pi}{2}))^2$;
- B) $\frac{1}{\pi} \arccos(\cos \frac{7\pi}{5})$; Γ) $\frac{1}{\pi} arctg(ctg \frac{3\pi}{5})$;
- д) $\arcsin(\sin 6) + 2\pi$.

5.7 Тригонометрические уравнения 5.7.1 Простейшие тригонометрические уравнения

$$\begin{split} \sin x &= a; \quad |a| \leqslant 1; x = (-1)^n \arcsin a + \pi n, \ n \in Z; \\ \sin x &= 0; \quad x = \pi k; k \in Z; \\ \sin x &= 1; \quad x = \frac{\pi}{2} + 2\pi k; k \in Z; \\ \sin x &= -1; \ x = -\frac{\pi}{2} + 2\pi k; k \in Z; \end{split}$$

$$\cos x = a; \quad |a| \leqslant 1; \ x = \pm \arccos a + 2\pi n, \ n \in \mathbb{Z};$$

$$\cos x = 0; \qquad x = \frac{\pi}{2} + \pi k; k \in \mathbb{Z};$$

$$\cos x = 1; \qquad x = 2\pi k; k \in Z;$$

$$\cos x = -1; \quad x = \pi + 2\pi k; k \in \mathbb{Z};$$

$$\operatorname{tg} x = a;$$
 $x = \operatorname{arctg} a + \pi n; n \in \mathbb{Z};$ $\operatorname{ctg} x = a;$ $x = \operatorname{arcctg} a + \pi n; n \in \mathbb{Z}.$

32. Решите уравнение:

a)
$$3\cos 4x = 0$$
;

6)
$$\sin 3x = 1$$
;

6)
$$\sin 3x = 1$$
; B) $3\cos \frac{x}{2} - 3 = 0$;

$$\Gamma$$
) $0.7 \sin 5x = 0$;

$$\Delta$$
 2 sin $x = -2$

д)
$$2\sin x = -2$$
 e) $7ctg\frac{x}{3} = 0$;

ж)
$$tg6x = 1$$
;

3)
$$3\cos x - 5 = 0$$
;

3)
$$3\cos x - 5 = 0$$
; u) $\sin x = \frac{\pi}{2}$;

33. Решите уравнение:

a)
$$2\cos(4x+\pi) = 0$$
;

6)
$$2\sin(x-\pi)=1$$
;

B)
$$\sqrt{2} \sin \frac{x - \pi}{2} = 1$$
;

$$\Gamma) 7\sin(5x-2\pi) = 0;$$

$$Д) tg(\frac{\pi}{2} + x) = 0;$$

e)
$$ctg(\pi + x) = \sqrt{3}$$
;

34. Решите систему:

a)
$$\begin{cases} 2\cos x = 1; \\ \sin x \le 0. \end{cases}$$

$$6) \begin{cases} 2\sin x = -\sqrt{3}; \\ tgx \le 0. \end{cases}$$

$$\mathbf{B} \begin{cases} 3 \cdot tgx = \sqrt{3}; \\ \cos x > 0. \end{cases}$$

$$\Gamma) \begin{cases} \sqrt{3} \cdot ctgx = -1; \\ \sin x < 0. \end{cases}$$

$$\exists \lim_{x \to 0} \begin{cases}
2\sin(x - \frac{\pi}{3}) = 1; \\
\tan(x - \frac{\pi}{3}) = 1;
\end{cases}$$

e)
$$\begin{cases} \sqrt{2} \sin \frac{x - \pi}{3} = 1; \\ \cos x \le 0 \end{cases}$$

- 35. Укажите наибольший отрицательный корень уравнения $2\sin x + 1 = 0$.
- 36. Укажите наименьший положительный корень уравнения $\sqrt{3}ctgx + 3 = 0$.
- 37. Найдите наибольший отрицательный корень уравнения $2\sqrt{3}tgx 6 = 0$.
- 38. Найдите наименьший положительный корень уравнения $\cos 2x = 0.5$.
- 39. Укажите число корней уравнения $\cos x = -\frac{\sqrt{3}}{2}$, которые лежат в промежутке $[0;3\pi]$.
- 40. Укажите число корней уравнения $tgx = -\sqrt{3}$, которые лежат в промежутке $[-\pi; 2\pi]$.
- 41. Укажите число корней уравнения $\sin x = \frac{1}{3}$ на промежутке $[0; \pi]$.
- 42. Решить уравнение $\cos(\pi x) = 1$. В ответе укажите произведение корней уравнения, принадлежащих промежутку (1;6).
- 43. Решите уравнение:

a)
$$\frac{\sin x}{1-\cos x}=0$$
;

$$6) \frac{\sin x - 1}{\cos x} = 0;$$

B)
$$\frac{2\sin x + \sqrt{3}}{1 - 2\cos x} = 0;$$

$$\Gamma) \frac{tgx-1}{\sqrt{2}-2\cos x}=0;$$

$$\pi \int \frac{\sin 2x}{1 + \cos 2x} = 0;$$

e)
$$\frac{2\sin x - 1}{\sqrt{3} - 2\cos x} = 0$$
.

5.7.2 Тригонометрические уравнения вида

 $\sin x = \pm a; \cos x = \pm a; tgx = \pm a; ctgx = \pm a$

- 1) $\sin x = \pm a, |a| \le 1, x = \pm \arcsin a + \pi n, n \in \mathbb{Z}.$
- 2) $\cos x = \pm a, |a| \le 1, x = \pm \arccos a + \pi n, n \in \mathbb{Z}.$
- 3) $tgx = \pm a, a \in R, x = \pm arcctga + \pi n, n \in Z$.
- 4) $ctgx = \pm a, a \in R, x = \pm arcctga + \pi n, n \in Z$.

44. Решите уравнение:

a) $\cos^2 4x = 1$;

6) $\sin^2 3x = \frac{1}{2}$;

- ж) $4\cos^2\frac{x}{3} 3 = 0$; 3) $3tg^2 5x = 9$.

5.7.3 Уравнение вида $f(x) \cdot g(x) = 0$

$$f(x) \cdot g(x) = 0 \Leftrightarrow \begin{cases} f(x) = 0 \\ g(x) = 0 \\ x \in D(f) \cap D(g) \end{cases}$$

45. Решите уравнение:

a) $(\cos x + 1)\sqrt{-\sin x} = 0$;

 $6) (tgx+1)\sqrt{\cos x} = 0;$

B) $(\cos^2 x - \frac{1}{4})\sqrt{\cos x} = 0;$

 $\Gamma) \left(ctg^2 x - 1 \right) \sqrt[4]{\sin x} = 0;$

5.7.4 Квадратные уравнения с тригонометрическим аргументом и уравнения, сводящиеся к ним

Пример: Решите уравнение $2 + \cos^2 x = 2\sin x$. Решение:

$$2 + \cos^2 x = 2\sin x \Leftrightarrow \cos^2 x - 2\sin x + 2 = 0 \Leftrightarrow (1 - \sin^2 x) - 2\sin x + 2 = 0 \Leftrightarrow$$

$$\Leftrightarrow \sin^2 x + 2\sin x - 3 = 0 \Leftrightarrow \begin{cases} \sin x = t, t \in [-1;1] \\ t^2 + 2t - 3 = 0 \end{cases} \Leftrightarrow \begin{cases} t \in [-1;1] \\ t = -3 \\ t = 1 \end{cases} \Leftrightarrow \sin x = 1 \Leftrightarrow x = \frac{\pi}{2} + 2\pi k, k \in \mathbb{Z}.$$

46. Решите уравнение:

a)
$$10 \sin^2 x + 3 \sin x - 1 = 0$$
;

B)
$$1 - 2\cos^2 x - \sin x = 0$$
;

$$\mathbf{J}$$
) $6\cos^2 x - 5\sin x - 5 = 0$

ж)
$$2tg^2x + ctg(\frac{3\pi}{2} - x) - 1 = 0;$$
 3) $tgx = 5tg(\frac{\pi}{2} - x) - 4;$

$$6) 2\cos^2 3x + 7\cos 3x - 4 = 0;$$

$$\Gamma$$
) $2\sin^2 2x + \cos 2x - 1 = 0$;

Д)
$$6\cos^2 x - 5\sin x - 5 = 0$$
; e) $2\sin^2 x + 5\cos x - 4 = 0$;

3)
$$tgx = 5tg(\frac{\pi}{2} - x) - 4$$

5.7.5 Однородные уравнения

Уравнение вида α ·sinx + b·cosx = 0, a \neq 0. Разделив обе части уравнения на cosx ≠ 0, получим уравнение относительно tg x, равносильное исходному. 47. Решите уравнение:

a)
$$\sin x = \cos x$$
;

B)
$$4\sin x - 5\cos x = 0$$
;

Д)
$$(\sin x - 3\cos x)\sqrt{-\sin x} = 0$$
; e) $\cos 2x + \sin 2x = 0$;

$$\Re 3\cos x + 2\sin x = 0;$$

$$6)^{\sqrt{3}\sin x - \cos x = 0};$$

$$\Gamma) \sqrt{3}\cos 2x = \sin 2x;$$

e)
$$\cos 2x + \sin 2x = 0$$

3)
$$2\cos(x/2) = \sin(x/2)$$

Уравнение вида $\alpha \cdot \sin^2 x + b \cdot \sin x \cdot \cos x + c \cdot \cos^2 x = 0$, $a \neq 0$.

Разделив обе части уравнения на $\cos^2 x \neq 0$, получим квадратное уравнение относительно tgx, равносильное исходному.

48. Решите уравнения:

- a) $\sin^2 3x = 3\cos^2 3x$;
- 6) $\sin^2 x \sin x \cos x 2\cos^2 x = 0$:
- B) $4\cos^2 x 7\sin x \cos x + 3\sin^2 x = 0$;
- $\Gamma) \sin^2 x 2\sin x \cdot \cos x = 3\cos^2 x.$

Уравнения вида $\alpha \cdot \sin^2 x + b \cdot \sin x \cdot \cos x + m = 0$, $a \cdot \cos^2 x + b \cdot \sin x \cdot \cos x + m = 0$, $\alpha \cdot \sin^2 x + b \cdot \sin x \cdot \cos x + c \cdot \cos^2 x = m$

Представив m как $(m \cdot \sin^2 x + m \cdot \cos^2 x)$, либо сводим данное уравнение к виду предыдущего пункта, либо решаем его разложением на множители.

49. Решите уравнения:

- a) $\cos^2 x 5\sin x \cos x + 2 = 0$;
- 6) $5\sin^2 x + 4\sin x \cos x 5\cos^2 x = 2$;
- B) $2\sin^2 x \sin x \cos x + 5\cos^2 x = 2$;
- Γ) $3\sin^2 x 2\sin 2x + \cos^2 x = 3$.

5.7.6 Уравнение вида $a \cdot \sin x + b \cdot \cos x = c$

Уравнения данного вида решаются **методом введения вспомогательного угла**, разделив обе части уравнения на $\sqrt{a^2+b^2} \neq 0$, получим:

$$\frac{a}{\sqrt{a^2 + b^2}} \cdot \sin x + \frac{b}{\sqrt{a^2 + b^2}} \cdot \cos x = \frac{c}{\sqrt{a^2 + b^2}}.$$

$$\cos \varphi \cdot \sin x + \sin \varphi \cdot \cos x = \frac{c}{\sqrt{a^2 + b^2}} \Leftrightarrow \sin(x + \varphi) = \frac{c}{\sqrt{a^2 + b^2}}$$

или

$$\sin \psi \cdot \sin x + \cos \psi \cdot \cos x = \frac{c}{\sqrt{a^2 + b^2}} \Leftrightarrow \cos(x - \psi) = \frac{c}{\sqrt{a^2 + b^2}}$$

Уравнения
$$\sin(x+\varphi) = \frac{c}{\sqrt{a^2+b^2}}$$
 и $\cos(x-\psi) = \frac{c}{\sqrt{a^2+b^2}}$

являются простейшими и имеют решение только при

$$\frac{|c|}{\sqrt{a^2+b^2}} \le 1$$
, т.е. при $|c| \le \sqrt{a^2+b^2}$.

Уравнение $a \cdot \sin x + b \cdot \cos x = c$ можно свести к однородному по формулам:

$$\sin x = 2\sin\frac{x}{2}\cos\frac{x}{2}, \cos x = \cos^2\frac{x}{2} - \sin^2\frac{x}{2}, 1 = \sin^2\frac{x}{2} + \cos^2\frac{x}{2}.$$

50. Решите уравнения:

a)
$$\sin x + \cos x = 1$$
;

$$6) \sin x - \cos x = \sqrt{\frac{3}{2}};$$

B)
$$\sqrt{3}\cos x - \sin x = 1$$

$$\Gamma)\cos x + \sqrt{3}\sin x = \sqrt{2};$$

$$\mathcal{I}(x)\cos\left(\frac{3\pi}{2}-x\right)-\sin\left(\frac{\pi}{2}-x\right)=\sqrt{2};$$

$$e)\sqrt{3}\sin x - 3\cos x = 3\sqrt{2};$$

$$\times$$
 3sin $x - 4\cos x = 5$;

3)
$$2\sin 17x + \sqrt{3}\cos 5x + \sin 5x = 0$$
;

VI. Показательная и логарифмическая функции

6.1 Показательная функция, ее свойства и график

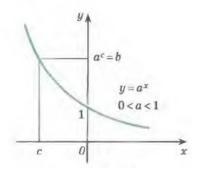
Определение. Функция, заданная формулой $y = a^x$, (где a > 0, $a \ne 1$), называется показательной функцией с основанием а.

Сформулируем основные свойства показательной функции.

- 1. Область определения множество R действительных чисел.
- 2. Область значений множество R_{+} всех положительных действительных чисел.
- 3. При a > 0 функция возрастает на всей числовой прямой; при 0 < a < 1 функция убывает на множестве R.

Графики показательной функции изображены на рисунках:





При любых действительных значениях x и y справедливы равенства:

$$a^{x}a^{y} = a^{x+y}; \frac{a^{x}}{a^{y}} = a^{x-y}$$
$$(ab)^{x} = a^{x}b^{x}; \left(\frac{a}{b}\right)^{x} = \frac{a^{x}}{b^{x}};$$
$$(a^{x})^{y} = a^{xy}.$$

Эти формулы называют основными свойствами степеней.

Пример 1. Найдите наибольшее значение функции $y = 5^{-x^2 + 2x - 3}$.

Решение. Обозначим $-x^2 + 2x - 3 = t$. Так как основание показательной функции 5^t равно 5, что больше 1, то функция монотонно возрастает. Следовательно, она достигает своего наибольшего значения при наибольшем значении показателя, т.е. в вершине x_0 параболы $t = -x^2 + 2x - 3$. Так как $x_0 = -\frac{b}{2a} = -\frac{2}{-2} = 1$, то

 $y_{\text{max}}(x) = y(1) = 5^{-1+2-3} = 5^{-2} = 0.04$.

Ответ: 0,04.

Пример 2. Найдите наибольшее и наименьшее $(1)^{x^2-4x+3}$

значения функции $y = \left(\frac{1}{3}\right)^{x^2 - 4x + 3}$ на отрезке [1;4].

Решение. Рассмотрим показатель степени $t = x^2 - 4x + 3 = (x - 2)^2 - 1$. Наименьшее значение данного квадратного трехчлена достигается в точке x = 2 и равно минус одному. Чтобы найти его наибольшее значение, рассмотрим концы отрезка. Наибольшее значение достигается в точке x = 4 и равно 3. Так как функция

 $y = \left(\frac{1}{2}\right)^{2}$ является монотонно убывающей, TO ee наибольшее значение достигается при t = -1 и равно 3, а наименьшее - при t = 3 и равно $\frac{1}{27}$.

Ombem: $3; \frac{1}{27}$.

- 1. Сравните числа:
- **а)** $3^{0.5}$ и $3^{-0.5}$;

6) $\left(\frac{1}{2}\right)^{-2.5}$ $\mathbb{M}\left(\frac{1}{2}\right)^{-1.5}$;

B) 2^{83} μ 4^{41} :

- г) 3⁹³ и 9⁴⁶.
- 2. Постройте график функции:
- a) $y = 2^x$;
- 6) $y = 2^x 3$:
- B) $y = 2^{x-3} + 2$;

- **ж**) $y = \left(\frac{1}{3}\right)^{|x|}$; **3**) $y = 3^x + 1$; **4**) $y = 3^x + 1$;

- **K)** $y = -4^{4}$;
- \mathbf{J} **)** $\mathbf{v} = -4^x 2$.
- 3. Найдите наибольшее и наименьшее значения функции f(x) на указанном отрезке:
- **a)** $f(x) = 5^{2x+1}, x \in [0;1];$
- **6)** $f(x) = 4^{-1-x}, x \in [-1;1];$
- **B)** $f(x) = (0,3)^{x+2}, x \in [-1,0];$ **r)** $f(x) = 5^{(x+1)^2}, x \in [-2,2].$

6.2 Логарифмы. Свойства логарифмов. Преобразование логарифмических выражений

Логарифмом данного числа x по основанию a называется показатель степени y, в которую нужно возвести основание a, чтобы получить данное число x. $y = \log_a x \Leftrightarrow a^y = x$.

Свойства логарифмов

Пусть $a > 0, a \neq 0$.

1.
$$a^{\log_a x} = x$$
, для $x > 0$;

2.
$$\log_a a = 1$$
;

3.
$$\log_a 1 = 0$$
;

4.
$$\log_a(xy) = \log_a |x| + \log_a |y|, xy > 0$$
;

5.
$$\log_a \left(\frac{x}{y} \right) = \log_a |x| - \log_a |y|, xy > 0$$
;

6.
$$\log_a(xy) = \log_a x + \log_a y, x > 0, y > 0$$
;

7.
$$\log_a x^k = \kappa \log_a |x|$$
, k - четное число;

8.
$$\log_a x = \frac{\log_b x}{\log_b a}$$
, $b > 0, b \ne 0, x > 0$;

9.
$$\log_{a^p} b = \frac{1}{p} \log_a b, p \neq 0, b > 0, a \neq 0, a \neq 1;$$

$$10. a^{\log_b c} = c^{\log_b a}.$$

При решении задач полезна следующая **теорема**. Если числа a и b на числовой оси расположены по одну сторону от единицы, то $\log_a b > 0$, а если по разные, то $\log_a b < 0$.

Пример 1. Найдите значение выражения $\log_{\frac{1}{4}} \sqrt{8}$

Решение: Здесь мы используем свойства логарифмических функций. Представим заданное выражение в виде $\log_{2^{-2}} 2^{1,5}$ и приведем к виду $\frac{1,5}{-2}\log_2 2=-0.75$

Ответ: -0,75.

Пример 2. Найдите значение выражения $\left(7^{\log_5 75}\right)^{\log_7 5}$

Решение: Поскольку $(a^b)^c = (a^c)^b$, данное выражение можно преобразовать так:

$$\left(7^{\log_5 75}\right)^{\log_7 5} = \left(7^{\log_7 5}\right)^{\log_5 75} = 5^{\log_5 75} = 75$$

Ответ: 75

Пример 3. Найдите значение выражения $\log_5 135 - \log_5 5,4$.

Решение:

$$\log_{5} 135 - \log_{5} 5,4 = \log_{5} \frac{135}{5,4} = \log_{5} \frac{1350}{54} = \log_{5} \frac{150}{6} = \log_{5} 25 = 2$$

Ответ: 2.

Пример 4. Найдите значение выражения $16^{\log_4 11}$ Решение: $16^{\log_4 11} = 4^{2\log_4 11} = 4^{\log_4 11^2} = 11^2 = 121$

Ответ: 121.

Пример 5. Найдите значение выражения $5^{\log_5 2} + 36^{\log_6 \sqrt{19}}$.

Решение:

$$5^{\log_5 2} + 36^{\log_6 \sqrt{19}} = 2 + 6^{2\log_6 \sqrt{19}} = 2 + 6^{\log_6 (\sqrt{19})^2} = 2 + (\sqrt{19})^2 = 2 + 19 = 21$$
Other: 21.

Пример 6. Найдите значение выражения $\log_3 \log_9 \sqrt[27]{\sqrt[3]{9}}$.

Решение: $\log_3 \log_9 \sqrt[27]{\sqrt[3]{9}} = \log_3 \log_9 \sqrt[8]{9} =$

$$= \log_3(\frac{1}{81}\log_9 9) = \log_3 3^{-4} = -4$$

Ответ: -4.

4. Вычислите:

- $a) \log_2 16;$
- $6)\log_{2}128;$
- B) $\log_{3} 81$;

- Γ) log ₅ 125;
- д) log ₁₃ 1;
- e) $\log_2 \frac{1}{4}$;

ж)
$$\log_3 \frac{1}{27}$$
;

и)
$$\log_{64} 4$$
;

$$\kappa$$
) log $\frac{1}{8}$;

л)
$$\log_{5} 0.04$$
;

o)
$$\log_{0.5} 4$$

$$\Pi$$
) log_{0.2} 0,008.

5. Вычислите:

a)
$$2^{\log_2 7}$$
;

6)
$$\left(\frac{1}{3}\right)^{\log_{1}{5}}$$
;

$$B)10^{\lg \pi};$$

$$\Gamma$$
) $5^{2+\log_5 3}$;

д)
$$5^{-4\log_5 3}$$
;

e)
$$6^{\log_6 3 + \log_6 5}$$
;

ж)
$$4^{2\log_4 7}$$
;

и)
$$\left(\frac{1}{2}\right)^{3\log_{\frac{1}{2}}6}$$
.

6. Вычислите:

a)
$$\lg 125 + \lg 8$$
;

$$6) \log_3 5 - \log_3 \frac{5}{27};$$

B)
$$\log_{12} 2 + \log_{12} 8 + \log_{12} 9$$
;

$$\Gamma$$
) $\lg 34 - \lg 2 - \lg 170$.

7. Вычислите:

a)
$$\log_{36} 84 - \log_{36} 14$$
;

$$6) \log_3 36 - 2 \log_2 3$$
;

B)
$$\log_{49} 84 - \log_{49} 12$$
;

$$\Gamma$$
) 2 lg 5 + $\frac{1}{2}$ lg 16.

8. Вычислите:

a)
$$\frac{\lg 8 + \lg 18}{2 \lg 2 + \lg 3}$$
;

$$6)\frac{\log_3 64}{\log_3 4};$$

B)
$$\frac{\lg 2 + 2\lg 3}{\lg 27 + \lg 12}$$
;

$$\Gamma)\frac{\log_{\frac{1}{2}}5}{\log_{\frac{1}{2}}625}.$$

9. Найдите х, если выполнено равенство:

a)
$$\log_5 x = 2 \log_5 3 + \frac{1}{2} \log_5 49 - \frac{1}{3} \log_5 27$$
;

$$6) \log_{7} x = 3 \log_{7} 2 + \frac{1}{3} \log_{7} 125 - 4 \log_{7} 3.$$

10. Вычислите:

a)
$$\log_{1/2} 12 - \log_2 9$$
;

$$6)\log_{2\sqrt{2}}128$$
;

B)
$$\log_{\sqrt{3}} \sqrt{18} - \log_3 2$$
;

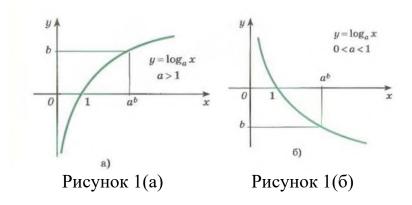
$$_{\Gamma}$$
) log $_{25\sqrt[4]{5}}$ (125 $\sqrt[3]{5}$).

6.3 Логарифмическая функция, ее свойства и график

Определение. Функцию, заданную формулой $y = \log_a x$, называют логарифмической функцией с основанием a.

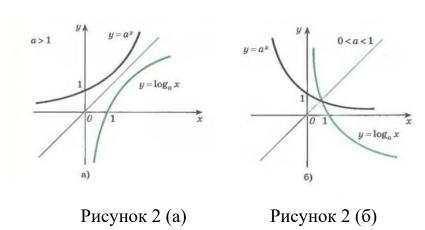
Основные свойства логарифмической функции.

- 1. Область определения логарифмической функции множество всех положительных чисел R_+ , т.е. $D(\log_a x) = R_+$.
- 2. Область значений логарифмической функции множество всех действительных чисел.
- 3. Логарифмическая функция на всей области определения возрастает (при a > 1, рис.1(a)) или убывает (при 0 < a < 1, рис.1(б)).



Справедливо следующее утверждение:

Графики показательной и логарифмической функции, имеющие одинаковое основание, симметричны относительно прямой y=x (см. рис. 2(а), 2(б)).



Рассмотрим примеры применения свойств логарифмической функции.

Пример 1. Найдем область определения функции $f(x) = \log_2(x^2 - 3x - 4)$.

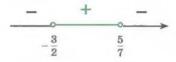
Решение: Область определения логарифмической функции – множество R₊. Решая квадратное неравенство,

 $x^2 - 3x - 4 > 0$ получаем, что D(f) – объединение интервалов $(-\infty;-1)$ и $(4;+\infty)$.

Пример 2. Найдем область определения функции $f(x) = \log_7 \frac{2x+3}{5-7x}$.

Решение: Область определения логарифмической функции – множество R_+

Решая методом интервалов неравенство $\frac{2x+3}{5-7x} > 0$,



находим, что D $(f) = \left(-\frac{3}{2}; \frac{5}{7}\right)$.

11. Найдите область определения функции:

a)
$$\log_{\pi}(10-5x)$$
;

$$6)\log_{2}(x-4)$$
;

$$6)\log_5(9-x^2)$$
;

$$\Gamma$$
) $\log_{0.3}(x^2-16)$.

12. Построить график функции:

a)
$$y = \log_3 x$$
;

6)
$$y = 2 + \log_2(x+2)$$
;

B)
$$y = 3 - \log_2 x$$
;

$$\Gamma$$
) $y = -1 + 2\log_2 x$;

д)
$$y = \log_{\frac{1}{2}} x$$
;

e)
$$y = 3 + \log_{\frac{1}{2}}(x-1)$$
;

$$\mathbb{K}$$
) $y = 3 - \log_{\frac{1}{3}} x$;

3)
$$y = 3\log_{\frac{1}{4}} x$$
.

6.4 Показательные уравнения и системы уравнений

6.4.1 Уравнения вида
$$a^{f(x)} = a^{g(x)}$$

$$a^{f(x)} = a^{g(x)} \Leftrightarrow f(x) = g(x), a > 0, a \neq 1.$$
$$a^{\log_a b} = b$$

Пример. Найдите больший корень уравнения $\left(\frac{1}{2}\right)^{x^2} \cdot \left(\frac{1}{3}\right)^{x^2} = 36^{2x+1.5}.$

Решение: Приведя левую и правую части уравнения к степеням числа 6, получим уравнение $6^{-x^2} = 6^{4x+3}$, откуда $-x^2 = 4x + 3$. Решая квадратное уравнение, получим корни x = -3 и x = -1. Больший корень x = -1.

Ответ: -1.

13. Решите уравнения:

a)
$$2^x = 0.5$$
;

B)
$$3^{x+5} = \frac{1}{9}$$
;

$$\Gamma$$
) $(\sqrt[10]{3})^x = 27$; Π) $2^{1-4x} = 32$;

$$(2^{1-4x} = 32)$$

e)
$$2^{5-x} = 64$$
;

ж)
$$2^{1-3x} = 128$$
;

ж)
$$2^{1-3x} = 128;$$
 3) $2^{2x-14} = \frac{1}{16};$

$$\mathrm{H}) \ 3^{5x-12} = \frac{1}{9};$$

$$K)4^{2x-17} = \frac{1}{64};$$

$$\kappa$$
) $4^{2x-17} = \frac{1}{64}$; π) $\left(\frac{1}{3}\right)^{4x-9} = \frac{1}{27}$;

$$M) \left(\frac{1}{2}\right)^{3x-12} = \frac{1}{8}.$$

a)
$$3^x = 27 \cdot \sqrt[4]{9}$$
; 6) $2^x = 16 \cdot \sqrt[5]{8}$.

$$6) \ 2^{x} = 16 \cdot \sqrt[5]{8}$$

15. Решите уравнения:

$$a)\left(\frac{2}{3}\right)^x \cdot \left(\frac{9}{8}\right)^x = \frac{27}{64};$$

$$6)\sqrt{8^{x-3}} = \sqrt[3]{4^{2-x}};$$

$$\mathbf{B})\sqrt{2^x}\cdot\sqrt{3^x}=36;$$

$$\Gamma\left(\frac{3}{7}\right)^{3x+1} = \left(\frac{7}{3}\right)^{5x-3}.$$

16. Решите уравнения:

a)
$$7^{x+2} + 4 \cdot 7^{x+2} = 539$$
;

6)
$$2 \cdot 3^{x+1} - 3^x = 15$$
;

B)
$$4^{x+1} + 4^x = 320$$
;

$$\Gamma)3 \cdot 5^{x+3} + 2 \cdot 5^{x+1} = 77.$$

17. Решите уравнения:

a)
$$5^{x+1} = 8^{x+1}$$
;

6)
$$\left(\frac{1}{3}\right)^{x-1} = \left(\frac{1}{4}\right)^{1-x}$$
; B) $7^{x-2} = 4^{x-2}$.

6.4.2 Уравнения вида $a^{f(x)} = b$.

При $b \le 0$ уравнение $a^{f(x)} = b$ $(a > 0, a \ne 1)$ корней не имеет.

При b > 0, прологарифмировав обе части уравнения по основанию a, получим:

$$a^{f(x)} = b \Leftrightarrow f(x) = \log_a b \quad (a > 0, a \neq 1).$$

Пример. Решите уравнение $(0,5)^{x+1} = 3$.

Решение: Прологарифмировав уравнение по основанию 0,5, получим:

$$\log_{0.5}(0.5)^{x+1} = \log_{0.5} 3 \Leftrightarrow x+1 = \log_{0.5} 3 \Leftrightarrow x = -1 + \log_{0.5} 3$$
.

Используя свойства логарифмов, ответ можно записать как $x = -1 - \log_2 3$. **Ответ:** $-1 - \log_2 3$.

a)
$$2^x = 3$$
;

6)
$$5^x + 10 = 0$$
;

B)
$$7^{x+3} = 5$$
;

$$\Gamma$$
) $(0,25)^{x-2}=5$; д) $4^{2-x}=5$;

$$\mathbf{\Pi}$$
) $4^{2-x} = 5$

e)
$$(0,1)^{x-2} = 5$$
;

ж)
$$9^x + 3^{2x} = 16$$
; 3) $3^{x^2} = 5$.

3)
$$3^{x^2} = 5$$

6.4.3 Уравнения, решаемые заменой переменной.

Уравнения вида $A \cdot a^{2f(x)} + B \cdot a^{f(x)} + C = 0$, $(a > 0, a \ne 1)$ с помощью замены $t = a^{f(x)}$ сводится к квадратному уравнению $At^2 + Bt + C = 0$.

Пример. Решите уравнение $4^{3x^2+x} = 14 + 8 \cdot 4^{1-x-3x^2}$.

Решение:
$$4^{3x^2+x} = 14 + 8 \cdot 4^{1-x-3x^2} \Leftrightarrow 4^{3x^2+x} = 14 + \frac{32}{4^{3x^2+x}}$$
.

Обозначив $4^{3x^2+x} = t$, где t > 0, получим уравнение $t = 14 + \frac{32}{t} \Leftrightarrow t^2 - 14t - 32 = 0$.

Из корней квадратного уравнения (t=16;t=-2) условию t>0 удовлетворяет только корень t=16. Тогда, сделав обратную замену, получим $4^{3x^2+x}=16 \Leftrightarrow 4^{3x^2+x}=4^2$, откуда $3x^2+x=2$. Решая уравнение $3x^2+x-2=0$, найдем его корни: $x=\frac{2}{3}$ и x=-1.

Ответ: $\frac{2}{3}$;-1.

a)
$$3^{2x} - 6 \cdot 3^x - 27 = 0$$
;

B)
$$(0.25)^x + 1.5 \cdot (0.5)^x - 1 = 0$$
;

д)
$$5^{2x+1}-26\cdot 5^x+5=0$$
;

ж)
$$12^x - 6^{x+1} + 8 \cdot 3^x = 0$$
;

и)
$$9^x - 8 \cdot 3^x - 9 = 0$$
;

л)
$$36^x - 4 \cdot 6^x - 12 = 0$$
;

6)
$$2 \cdot 4^x - 5 \cdot 2^x + 2 = 0$$
:

$$\Gamma$$
) $2 \cdot \left(\frac{4}{9}\right)^x + 7 \cdot \left(\frac{2}{3}\right)^x - 6 = 0$;

e)
$$\left(\frac{1}{3}\right)^{2x} + \left(\frac{1}{3}\right)^{x-2} - 162 = 0$$
;

3)
$$18^x - 8 \cdot 6^x - 9 \cdot 2^x = 0$$
;

$$K(100^x - 11 \cdot 10^x + 10 = 0;$$

M)
$$49^x - 8 \cdot 7^x + 7 = 0$$
.

6.4.5 Однородные уравнения

Уравнения вида $\delta \cdot a^{f(x)} = \beta \cdot b^{f(x)}$

Разделив обе части уравнения на $\delta \cdot b^{f(x)} \neq 0$, получим:

$$\delta \cdot a^{f(x)} = \beta \cdot b^{f(x)} \Leftrightarrow \left(\frac{a}{b}\right)^{f(x)} = \frac{\beta}{\delta},$$
$$(a > 0, a \neq 1, b > 0, b \neq 1, \delta \neq 0, \beta \neq 0).$$

Пример. Решите уравнение $5^{2x-1} = 9^{x-\frac{1}{2}}$.

Решение:
$$5^{2x-1} = (3^2)^{x-\frac{1}{2}} \Leftrightarrow 5^{2x-1} = 3^{2x-1}$$
.

Разделив обе части уравнения на 3^{2x-1} ($3^{2x-1} > 0$ при $x \in R$), получим:

$$\frac{5^{2x-1}}{3^{2x-1}} = 1 \Leftrightarrow \left(\frac{5}{3}\right)^{2x-1} = \left(\frac{5}{3}\right)^0 \Leftrightarrow 2x - 1 = 0 \Leftrightarrow x = 0,5.$$

Ответ: 0,5.

a)
$$5^x = 3^x$$
;

6)
$$5^{2x-1} = 4^{x-\frac{1}{2}}$$
;

B)
$$\frac{7^{x+2}}{5} = \frac{5^{x+2}}{7}$$
; **r)** $3^{x+2} = \frac{1}{3}4^{x+3}$; **д)** $3^x + 3^{x+1} = 2^{x+2}$;

$$\Gamma) \ 3^{x+2} = \frac{1}{3} 4^{x+3};$$

д)
$$3^x + 3^{x+1} = 2^{x+2}$$
;

e)
$$4^x + 4^{x-1} + 4^{x-2} = 5^{x-2} + 4 \cdot 5^{x-1}$$
;

ж)
$$5^{x+0.5} - 9^x = 3^{2x-2} - 5^{x-0.5}$$
;

3)
$$3^{x^2-2} - 2^{x^2-1} = 2^{x^2-1} - 3^{x^2}$$
.

6.4.6 Системы уравнений

21. Решите систему уравнений:

a)
$$\begin{cases} x - y = 1 \\ 4^{x} \cdot 5^{y} = 0.2 \end{cases}$$
b)
$$\begin{cases} x - y = 2 \\ 4^{x} + 12 \cdot 2^{y} = 4 \end{cases}$$
c)
$$\begin{cases} 4^{x} + 2^{x} y = 10 \\ y^{2} + 2^{x} y = 15 \end{cases}$$
d)
$$\begin{cases} 3 \cdot 5^{x} - 3^{y} = 6 \\ 5^{x} + 2 \cdot 3^{y} = 23 \end{cases}$$
e)
$$\begin{cases} 3^{x} \cdot 2^{y} = 108 \\ 3^{x} - 2^{y} = 23 \end{cases}$$

6.5 Логарифмические уравнения

6.5.1 Уравнения вида
$$\log_{a} f(x) = \log_{a} g(x)$$

$$\log_{a} f(x) = \log_{a} g(x) \Leftrightarrow \begin{cases} a > 0 \\ a \neq 1 \\ f(x) > 0(g(x) > 0) \\ f(x) = g(x) \end{cases}$$

Замечание: в общем случае a = a(x).

Пример. Решите уравнение $\log_{7}(x^2 - 3x - 1) = \log_{7}(2 - x)$.

Решение:

$$\log_{7}(x^{2} - 3x - 1) = \log_{7}(2 - x) \Leftrightarrow \begin{cases} 2 - x > 0, \\ x^{2} - 3x - 1 = 2 - x \end{cases} \Leftrightarrow$$

$$\Leftrightarrow \begin{cases} x < 2, \\ x^2 - 2x - 3 = 0 \end{cases} \Leftrightarrow \begin{cases} x < 2 \\ x = -1, \Leftrightarrow x = -1. \\ x = 3 \end{cases}$$

Ответ: -1

a)
$$\log_2(3x-6) = \log_2(2x-3)$$
;

6)
$$\log_{0.3}(7x-9) = \log_{0.3} x$$
;

B)
$$\log_2(3x+8) = \log_2(3-x)+1$$
;

$$\Gamma$$
) $\log_3(18 - x) = 4\log_3 2$;

Д)
$$\log_3(x^2 - 6) = \log_3(5x)$$
;

e)
$$\log_{0.8}(9x-4x^2) = \log_{0.8}(x^3+4x^2);$$

$$\mathbb{K}$$
) $\log_2(3x-1) + \log_2(3x+1) = \log_2 8$;

3)
$$\lg(x^2 - 6) = \lg(8 + 5x)$$
;

и)
$$\log_{0.3}(-x^2+5x+7) = \log_{0.3}(10x-7);$$

$$K) \frac{\lg(x^2 - 8)}{\lg(2 - 9x)} = 1;$$

6.5.2 Уравнения вида $\log_{a} f(x) = b$

$$\log_{a} f(x) = b \Leftrightarrow \begin{cases} a > 0 \\ a \neq 1 \\ f(x) = a \end{cases}$$

Пример. Решите уравнение $\log_{0.5}(x^2-4x-1)=-2$. В ответ запишите меньший корень.

Решение:

$$\log_{0.5}(x^2 - 4x - 1) = -2 \Leftrightarrow x^2 - 4x - 1 = (0.5)^{-2} \Leftrightarrow x^2 - 4x - 1 = 4 \Leftrightarrow x^2 - 4x - 5 = 0$$

Корни квадратного уравнения: $x_1 = -1; x_2 = 5$.

Меньший из них x = -1.

Ответ:-1.

- Γ) $\log_{16} x = -0.25$; Π) $\log_{7} (x-3) = 1$; $\log_{7} (1-x) = 2$;
- ж) $\log_2(x+2) = -1$; 3) $\log_{0.5}(x-4) = -4$; и) $\log_{0.5}|2x+3| = -1$;
- K) $\log_3(x^2 11x + 27) = 2$ π) $\log_{0.2}(x^2+4x-20)=0$;
- 24. Решите уравнение:

- Γ) $\log 3 = -0.5$; Π) $\log (2x^2 3x 4) = 2$.

6.5.3 Уравнения, решаемые заменой переменной

Пример. Решите уравнение. В ответ запишите меньший корень: $log_3^2(1-x)-log_3(x-1)^2-8=0$

Решение: Так как по ОДЗ 1-x > 0, то

$$log_3(1-x)^2 = 2log_3|x-1| = 2log(1-x)$$
.

Уравнение преобразуется К виду: $log_3^2(1-x)-2log_3(1-x)-8=0$.

Обозначив $log_3(1-x) = t$, получим $t^2 - 2t - 8 = 0$, корни которого $t_1 = -2$; $t_2 = 4$.

Сделаем обратную замену: $log_3(1-x) = -2$ или $log_{2}(1-x)=4$.

$$1-x=3^{-2} \Leftrightarrow x=1-\frac{1}{9}=\frac{1}{8}$$
 или $1-x=3^4 \Leftrightarrow 1-x=81 \Leftrightarrow x=-80$

Меньший корень: x = -80.

Ответ: -80.

- 25. Решите уравнение:
- a) $7 \log_5^2(2x) 20 \log_5(2x) 3 = 0$;
- 6) $\log_2^2 x + 2\log_2 \sqrt{x} = 2$:
- B) $lg^2 x 3 lg x = lg x^2 4$:

 Γ) $2 lg x^2 - lg^2 (-x) = 4$;

 π) $log_2^2 x^4 - 16 log_2 x^2 = 48$:

e) $lg(100x) \cdot lg x = -1$.

ж)
$$log_3^2 x + 3log_3 x + 9 = \frac{37}{log_3 \frac{x}{27}};$$

3)
$$\log_x 2 - \log_4 x = \frac{7}{6}$$
;

$$\mathbf{H}) log_{\frac{1}{2}}^{2}(4x) + log_{2}\left(\frac{x^{2}}{8}\right) + 7 = 0;$$

$$\mathbf{K}) lg^{2}x - lgx + 1 = \frac{9}{lg(10x)}$$

6.5.4 Метод приведения логарифмов к одному основанию

Пример. Решите уравнение $log_3 x + log_9 x + log_{27} x = \frac{11}{3}$.

Решение: Перепишем уравнение в виде: $log_3 x + log_3 x + log_3 x = \frac{11}{3}$.

Используя свойства логарифмов, получим:

$$log_3 x + \frac{1}{2}log_3 x + \frac{1}{3}log_3 x = \frac{11}{3} \Leftrightarrow log_3 x \cdot \left(1 + \frac{1}{2} + \frac{1}{3}\right) = \frac{11}{3}$$

 $\Leftrightarrow log_3 x \cdot \frac{11}{6} = \frac{11}{3} \Leftrightarrow log_3 x = 2; \Leftrightarrow x = 3^2 = 9.$

Ответ: 9

26. Решите уравнение:

a)
$$3(\log_2 x + \log_4 x + \log_8 x + \log_{16} x) = 25$$
;

6)
$$2\log_4(4-x) = 4 - \log_2(-x-1)$$
;

B)
$$log_{\frac{1}{2}}(x-1) + log_{\frac{1}{2}}(x+1) - log_{\frac{1}{\sqrt{2}}}(7-x) = 1;$$

a)
$$\log_{x+1}(1-3x) = \log_{\sqrt{1-3x}}(1-2x-3x^2) - 1;$$

6)
$$2\log_{\frac{1}{4}}\log_{\frac{1}{\sqrt{3}}}(2+x) + \log_{2}\log_{\frac{1}{3}}(2x+\frac{31}{9});$$

B)
$$\log_{1-2x} (6x^2 - 5x + 1) - \log_{1-3x} (1 - 4x + 4x^2) = 2$$
.

6.5.5 Использование основного логарифмического тождества и других свойств логарифмов

Пример. Решите уравнение $7^{log_7(-x)} + x^2 = 2x + 10$. **Решение:** Выпишем ОДЗ: $-x > 0 \Leftrightarrow x < 0$.

Используя основное логарифмическое торжество, получим:

$$\begin{cases} x < 0 \\ x^2 - 3x - 10 = 0 \end{cases} \Leftrightarrow \begin{cases} x < 0 \\ x = -2 \Leftrightarrow x = -2 \\ x = 5 \end{cases}$$

Ответ: -2

28. Решите уравнение:

a)
$$5^{\log_5 x} + x^2 = 12$$
;

$$6)9^{\log_3 x} - 2x = 8;$$

B)
$$3^{1+\log_3 x} + x^{\frac{1}{\log_3 x}} = x^2 + 5;$$

$$\Gamma$$
) 8 + 6^{1+log₆ x} = 2^{1+log₂ x};

$$\pi \log_2(-x) = 5^{\frac{1}{\log_2 5}};$$

e)
$$10^{\lg(x-3)} = \log_2(9-2^x);$$

a)
$$\log_3(x-2) + \log_3(x+2) = \log_3(2x-1)$$
;

6)
$$\log_{0.4}(x+2) + \log_{0.4}(x-3) = \log_{0.4}(2x-1);$$

B)
$$2\sin^2 x + 2^{\log_2 \sin x} - 1 = 0$$
;

$$\Gamma$$
) $\frac{1}{3} \lg(x^2 - 16x + 20) - \frac{1}{3} \lg(8 - x) = \lg \sqrt[3]{7}$;

$$\pi$$
) $\log_2 \log_2 (5x-4) = 1 + \log_2 \log_2 x$;

e)
$$2\log_2 \frac{x-7}{x-1} + \log_2 \frac{x-1}{x+1} = 1$$
;

ж)
$$\log_3(3^x - 8) = 2 - x$$
;

3)
$$x(1-\lg 5) = \lg(2^x + x - 1)$$
.

6.5.6 Уравнение вида $(f(x))^{\varphi(x)} = g(x)$

Уравнения $(f(x))^{\varphi(x)} = g(x)$ решаются методом логарифмирования:

$$[f(x)]^{\varphi(x)} = g(x) \leftrightarrow \begin{cases} \varphi(x)\log_a f(x) = \log_a g(x) \\ f(x) > 0 \\ g(x) > 0 \\ a > 0, a \neq 1 \end{cases}$$

30. Решите уравнение:

6.5.7 Уравнения с отбором корней

31. Решите уравнение и укажите его корни, принадлежащие заданному промежутку:

a)
$$\log_{\frac{1}{2}} \left(tg^2 x - \frac{5}{\cos x} + 11 \right) = -2, x \in \left[-\frac{\pi}{2}; \pi \right];$$

6) $\log_5 tgx = (\log_5 4) \log_4 (3\sin x), x \in \left(-\frac{\pi}{2}; \frac{\pi}{2} \right);$
B) $\lg \left(6\cos \left(-\frac{3\pi}{2} - x \right) \right) + \lg \left(\sin x + \frac{5}{6} \right) = \log_3 (3\cos 2\pi), x \in \left(-7\pi; -\frac{9\pi}{2} \right].$

6.6 Системы логарифмических уравнений

32. Решите системы уравнений:

a)
$$\begin{cases} \log_5(x+y) = 1 \\ \log_6 x + \log_6 y = 1 \end{cases};$$

$$\begin{cases} \log_{\frac{1}{3}}(3x-y) = \log_{\frac{1}{3}}(x+4) \\ \log_{\frac{1}{3}}(x^2+x-y) = \log_{\frac{1}{3}}(x+4) \end{cases};$$

$$\begin{cases} \log_2(x-y) - \log_2 3 = 2 - \log_2(x+y) \\ \log_{\frac{1}{2}}(x-y) = -2 \end{cases};$$

$$\begin{cases} \log_2(x-y) - \log_2 3 = 2 - \log_2(x+y) \\ \log_x y - \log_y x = \frac{3}{2} \end{cases};$$

$$\begin{cases} \log_x y - \log_y x = \frac{3}{2} \end{cases};$$

$$\begin{cases} \log_x y - \log_y x = \frac{3}{2} \end{cases};$$

$$\begin{cases} \log_x y + 2 (\log_x x - 1) = -2 \\ (x+1)^2 + (2y+1)^2 = 2x + 4y + 7 \end{cases}.$$

6.7 Показательные неравенства

6.7.1 Неравенство вида $a^{f(x)} \ge a^{g(x)}$

$$a^{f(x)} \ge a^{g(x)} \Leftrightarrow \begin{bmatrix} \begin{cases} a>1 \\ f(x) \ge g(x) \end{cases} \\ \begin{cases} 0 < a < 1 \\ f(x) \le g(x) \end{cases}$$

a)
$$\left(\frac{1}{3}\right)^{-2-x} \ge 27;$$
 6) $\left(\frac{1}{8}\right)^{1-x} < 512;$ B) $\left(\frac{1}{7}\right)^{2+x} > 49;$ Γ) $\left(\frac{1}{4}\right)^{1+x} < 64;$ Π) $\left(\frac{1}{2}\right)^{5-x} < 8;$ e) $\left(\frac{1}{4}\right)^{-3+x} \ge 4$ Π) $\left(\frac{1}{5}\right)^{5-x} \le 5;$ 3) $\left(\frac{1}{6}\right)^{3-x} \ge 216;$ Π) $\left(\frac{1}{2}\right)^{1+x} > 8;$ Π) $\left(\frac{1}{7}\right)^{5-x} < 49;$ Π) $\left(\frac{1}{9}\right)^{3-x} > 729;$ Π) $\left(\frac{1}{2}\right)^{x} \ge 16^{x};$

H)
$$\left(\frac{1}{2}\right)^{x-1} < 2^x$$
; o) $\left(\frac{1}{2}\right)^{x+4} < 16^x$; Π) $\left(\frac{1}{3}\right)^{x-7} > 27^x$.

- 34. Укажите наибольшее решение неравенства: $2^{\sqrt{5-x}} > -6$
- 35. Укажите наименьшее решение неравенства: $2^{\sqrt{x+7}} > -1$
- 36. Найдите наибольшее натуральное решение

неравенства: $3^{x-5} < 81$

37. Укажите наибольшее целое решение неравенства:

$$5^{x-1} \le \frac{1}{\sqrt[5]{5}}$$

6.7.2 Неравенство вида $a^{f(x)} \ge b$, $a^{f(x)} \le b$

Если
$$b > 0$$
, то $a^{f(x)} \ge b \Leftrightarrow a^{f(x)} \ge a^{\log_a b}, a > 0, a \ne 1$; $a^{f(x)} \le b \Leftrightarrow a^{f(x)} \le a^{\log_a b}, a > 0, a \ne 1$. Если $b \le 0$, то $a^{f(x)} \ge b \Leftrightarrow x \in D(f(x))$; $a^{f(x)} \le b \Leftrightarrow x \in \emptyset$.

Пример. Решите неравенство $5^{(x-2)} > \frac{1}{3}$.

Решение: Используя основное логарифмическое тождество, представим $\frac{1}{3}$ в виде степени с основанием 5:

$$\frac{1}{3} = 5^{\log_5 \frac{1}{3}} = 5^{(-\log_5 3)}$$
. Тогда $5^{(x-2)} > 5^{(-\log_5 3)}$.
Так как $5 > 1$, то $x - 2 > -\log_5 3 \Leftrightarrow x > 2 -\log_5 3$.

Other: $(2 - \log_2 3; +\infty)$.

a)
$$2^{x} \ge 9$$
; $6) \left(\frac{1}{3}\right)^{x-2} < 4$; $6) \left(\frac{1}{3}\right)^{x-2} < 4$;

$$\Gamma$$
) $(0,2)^{x-1} > 3;$ π) $\left(\frac{2}{7}\right)^{3-x} > 11;$ e) $3^{x^2+1} < -1;$

$$\mathbf{w})2^{x} + 2^{x+2} \le 20.$$

39. Найдите область определения функции:

a)
$$y = \sqrt{3^{2x-1} - 1}$$
;

$$6) y = \sqrt{5^{5x-4} - 10} ;$$

B)
$$y = \sqrt{1 - (0.7)^{2x-3}}$$
.

6.7.3 Неравенства вида $a^{f(x)} \ge b^{f(x)}$

$$a^{f(x)} \ge b^{f(x)} \iff \left(\frac{a}{b}\right)^{f(x)} \ge 1, \ a > 0, \ b > 0, \ a \ne 1, \ b \ne 1.$$

Пример. Решите неравенство $25 \cdot 2^{2x+3} > 4 \cdot 5^{2x+3}$.

Решение: Разделим обе части неравенства на $25 \cdot 5^{2q+3}$.

Получим
$$\left(\frac{2}{5}\right)^{2x+3} > \left(\frac{2}{5}\right)$$
.

Так как $0 < \frac{2}{5} < 1$, то $2x + 3 < 2 \Leftrightarrow x < -0.5$.

Ответ: $(-\infty;-0,5)$.

a)
$$3^x > 7^x$$
;

$$6)2^{2x+1} > 3^{2x+1};$$

B)
$$9^{x+1} < \sqrt{8^{4x+4}}$$
;

$$\Gamma$$
) $3^{x+2} + 7^x > 34 \cdot 3^{x-1} + 4 \cdot 3^{x-1}$;

$$\pi$$
) $3^{x+1} + 3^{x+2} + 2 \cdot 3^x > 2 \cdot 7^{2x+1}$.

6.7.4 Неравенства, решаемые заменой переменной

Пример. Решите неравенство $25^{-x} - 5^{-x+1} \ge 50$.

Решение: $25^{-x} - 5^{-x+1} \ge 50 \Leftrightarrow (5^{-x})^2 - 5 \cdot 5^{-x} \ge 50$.

Выполнив замену переменной $5^{-x} = t$, где t > 0, получим квадратное неравенство:

$$t^2 - 5t - 50 \ge 0 \Leftrightarrow (t - 10)(t + 5) \ge 0 \Leftrightarrow \begin{bmatrix} t \ge 10 \\ t \le -5 \end{bmatrix}$$

Учитывая условия t > 0, получим $t \ge 10$.

Отсюда $5^{-x} \ge 10 \Leftrightarrow 5^{-x} \ge 5^{\log_5 10} \Leftrightarrow x \le -\log_5 10$.

Other: $\left(-\infty; -\log_5 10\right]$

41. Решить неравенство:

a)
$$3^{2x} - 4 \cdot 3^x + 3 \le 0$$
;

$$6) \ 2^{\frac{1-x}{x}} < 2^{\frac{1-2x}{2x}} + 1;$$

B)
$$(0.2)^{2x} - 1.2 \cdot (0.2)^x + 0.2 > 0$$
; $\Gamma = \frac{2^{x+1} + 1}{2 - 2^{x+1}} \ge 2$;

$$\Gamma \left(\frac{2^{x+1}+1}{2-2^{x+1}} \ge 2 \right)$$

$$\mathbb{Z}$$
Д) $2^{6x-10} - 9 \cdot 2^{3x-5} + 8 \le 0$;

e)
$$\left(\frac{1}{4}\right)^{2x-1} + 15\left(\frac{1}{4}\right)^x - 4 < 0$$
.

6.7.5 Однородные неравенства

Пример. Решите неравенство:

$$64 \cdot 9^x - 84 \cdot 12^x + 27 \cdot 16^x \le 0.$$

Решение: Преобразуем неравенство:

$$4 \cdot 4^{2} \cdot (3^{x})^{2} - 7 \cdot 3 \cdot 4 \cdot 4^{x} \cdot 3^{x} + 3 \cdot 3^{2} \cdot (4^{x})^{2} \le 0 \Leftrightarrow$$

$$\Leftrightarrow 4 \cdot (4 \cdot 3^x)^2 - 7(4 \cdot 3^x)(3 \cdot 4^x) + 3 \cdot (3 \cdot 4^x)^2 \le 0.$$

Разделив обе части неравенства на $(3 \cdot 4^x)^2$, $)(3 \cdot 4^x)^2 > 0$ для всех х), получим:

$$4 \cdot \left(\left(\frac{3}{4} \right)^{x-1} \right)^2 - 7 \left(\frac{3}{4} \right)^{x-1} + 3 \le 0.$$

Обозначив $\left(\frac{3}{4}\right)^{x-1} = t$, где t > 0, получим квадратное

неравенство:

$$4t^{2} - 7t + 3 \le 0 \Leftrightarrow 4\left(t - 1\right)\left(t - \frac{3}{4}\right) \le 0 \Leftrightarrow \begin{cases} t < 1, \\ t > \frac{3}{4}. \end{cases}$$
$$\left(\frac{3}{4}\right)^{x - 1} \le 1$$
$$\left(\frac{3}{4}\right)^{x - 1} \ge \frac{3}{4}.$$

Так как $0 < \frac{3}{4} < 1$, то $\begin{cases} x - 1 \ge 0 \\ x - 1 \le 1 \end{cases} \Leftrightarrow 1 \le x \le 2$. Ответ: [1; 2].

a)
$$25^x - 15^x - 2 \cdot 9^x < 0$$
;

6)
$$6 \cdot 4^x - 21 \cdot 6^x + 18 \cdot 9^x > 0$$
;

B)
$$4 \cdot 5^{2x+2} - 9 \cdot 20^{x+1} - 5 \cdot 4^{2x+2} > 0$$
;

r)
$$25^{x+0.5} - 7 \cdot 10^x + 2^{2x+1} \ge 0$$
;

д)
$$3^{2x+1} - 7 \cdot 12^x + 4^{2x+1} \ge 0$$
;

e)
$$3 \cdot 7^{\frac{2}{x}} - 4 \cdot 21^{\frac{1}{x}} - 7 \cdot 9^{\frac{1}{x}} < 0$$
;

$$\times$$
 $7 \cdot 16^{\frac{x+1}{x-1}} + 3 \cdot 28^{\frac{x+1}{x-1}} \ge 4 \cdot 49^{\frac{x+1}{x-1}}$;

3)
$$2 \cdot 4^{\frac{x-3}{x-1}} - 6^{\frac{x-3}{x-1}} \ge 3 \cdot 9^{\frac{x-3}{x-1}}$$
.

6.8 Логарифмические неравенства

6.8.1 Неравенства вида $\log_a f(x) \ge \log_a g(x)$ и неравенства, сводящиеся к ним

При
$$a < 1 \log_a f(x) \ge \log_a g(x) \Leftrightarrow \begin{cases} f(x) \ge g(x) \\ g(x > 0) \end{cases}$$
.

При $0 < a < 1 \log_a g(x) \Leftrightarrow \begin{cases} f(x) \le g(x) \\ f(x) > 0 \end{cases}$.

Пример 1. Решите неравенство $\log_{0,3}(x+3) < \log_{0,3}(2x+5)$.

Решение: Учитывая, что основание логарифмов 0 < 0.3 < 1, получим:

$$\log_{0,3}(x+3) < \log_{0,3}(2x+5) \Leftrightarrow \begin{cases} x+3 < 2x+5 \\ 2x+5 > 0 \end{cases} \Leftrightarrow \begin{cases} x<-2 \\ x>-2,5 \end{cases} \Leftrightarrow x \in (-2,5;-2).$$
Other: $(-2,5;-2)$.

Пример 2. Решите неравенство:

$$(3-x)\log_2(1+\sqrt{7})^{x^2+3x+2} > \sqrt{2-x}\cdot\log_2(8+2\sqrt{7})^{(x+1)\sqrt{x+1}}$$
. Решение. Область определения: ${2-x\geq 0 \atop x+1\geq 0} \Leftrightarrow {x\leq 2 \atop x\geq -1} \Leftrightarrow x\in [-1;2]$.

Используя свойства логарифмов, получим:

$$(3-x)(x^2+3x+2)\log_2(1+\sqrt{7})>\sqrt{2-x}\cdot(x+1)\sqrt{x+1}\cdot\log_2(1+2\sqrt{7}+7)\Leftrightarrow\\ \Leftrightarrow (3-x)(x+1)(x+2)\log_2(1+\sqrt{7})>\sqrt{(2-x)\cdot(x+1)}\cdot(x+1)\cdot\log_2(1+\sqrt{7})^2\Leftrightarrow\\ \Leftrightarrow (-x^2+x+6)\cdot(x+1)\log_2(1+\sqrt{7})>\sqrt{-x^2+x+2}\cdot(x+1)\cdot2\log_2(1+\sqrt{7})\Leftrightarrow\\ \Leftrightarrow (x+1)\log_2(1+\sqrt{7})\cdot\left(-x^2+x+6-2\sqrt{-x^2+x+2}\right)>0.$$

 Tak kak1+\sqrt{7}>1, To \log_2(1+\sqrt{7})>0.

Разделив обе части неравенства на положительное число, $\log_2(1+\sqrt{7})>0$ получим: $(x+1)(-x^2+x+6-2\sqrt{-x^2+x+2})>0$.

Учитывая, что по области определения $x \ge -1$, рассмотрим 2 случая:

- 1) Если x=1, то неравенство примет вид 0>0, что неверно.
- 2) Если x > -1, то x+1>0 и, следовательно, $-x^2+x+6-2\sqrt{-x^2+x+2}>0$.

Обозначим $\sqrt{-x^2 + x + 2} = t, t \ge 0$.

Тогда $-x^2 + x + 6 = (-x^2 + x + 2) + 4 = t^2 + 4$. Получим квадратное неравенство $t^2 - 2t + 4 > 0$.

Так как $\frac{D}{4} = 1 - 4 = -3 < 0$ и коэффициент при t^2 положительный, то неравенство справедливо при всех $t \ge 0$ т.е. при всех рассматриваемых значениях x(x > -1),принадлежащих области определения $(x \in [-1;2])$, т.е. при всех $x \in (-1;2]$.

Ответ: $x \in (-1,2]$.

- a) $\log_2(5x-9) < \log_2(3x+1)$;
- 6) $\log_{0.4}(12x+2) \ge \log_{0.4}(10x+16)$;
- B) $\lg(2x-3) \ge \lg(3x-5)$;
- Γ) $\ln(4x-5) \le \ln(5x-8)$;
- Д) $\log_{2.5}(6-x) < \log_{2.5}(4-3x);$
- e) $\log_{\frac{1}{3}}(-x) > \log_{\frac{1}{3}}(4-2x);$
- **ж**) $\log_3(6+x^2) < \log_3(5x)$;
- 3) $\log_{0.6}(6x-x^2) > \log_{0.6}(-8-x);$
- и) $\lg(x^2-8) \le \lg(2-9x)$;
- K) $\log_{0.5}(6-x) \ge \log_{0.5} x^2$.

6.8.2 Неравенства вида $\log_a f(x) \ge b$

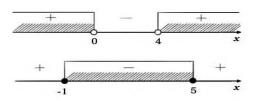
Представив b в виде $b = \log_a a^b$, получим: $\log_a f(x) \ge b \Leftrightarrow \log_a f(x) \ge \log_a a^b$.

Пример. Решите неравенство $\log_5(x^2 - 4x) \le 1$.

Решение: Учитывая, что $\log_a a = 1, (a > 0; a \ne 1)$, перепишем заданное неравенство в виде: $\log_5(x^2 - 4x) \le \log_5 5$, которое равносильно системе

Hepabeheth: $\begin{cases} x^2 - 4x > 0 \\ x^2 - 4x < 5 \end{cases} \iff \begin{cases} x(x-4) > 0 \\ x^2 - 4x - 5 < 0 \end{cases} \iff \begin{cases} x(x-4) > 0 \\ (x-5)(x+1) \le 0. \end{cases}$

Для решения неравенств системы используем метод интервалов:



Получим: $\begin{cases} x \in (-\infty;0) \cup (4;\infty), \\ x \in [-1;5] \end{cases} \Leftrightarrow x \in [-1;0) \cup (4;5].$

Ответ: $[-1;0)\cup(4;5]$.

a)
$$\log_3 x > 2$$
;

6)
$$\log_{3} x < 2$$
;

B)
$$\log_5(3x+1) < 2$$
;

$$\Gamma$$
) $\log_{0.5}(5x-1) > 0$;

д)
$$\log_{0.5} \frac{x}{3} \ge -2$$
;

ж)
$$\log_{0,2}(1-2x)<-2$$
;

3)
$$\log_{0,2}(1-2x) \ge -2$$
; If $\log_{5}(x^2-7x) > 1$;

и)
$$\log_5(x^2 - 7x) > 1$$

K)
$$\log_2(x^2 - 6x + 24) < 4$$
; π) $\log_{0.5}(x^2 + 0.5x) \le 1$;

$$\pi$$
) $\log_{0.5}(x^2+0.5x) \le 1$;

M)
$$\lg(x^2 - 5x + 7) < 0$$
; H) $\log_7 \frac{1 - 2x}{x} \le 0$;

H)
$$\log_{7} \frac{1-2x}{x} \le 0$$
;

o)
$$\frac{1}{\log_{2\pi,5} 3} < 1$$
;

$$\Pi$$
) $\frac{1}{\log_{x-3} 4} < 1$.

6.8.3 Неравенства, решаемые заменой переменной

Пример. Решите неравенство

$$\log_{4}^{2}(x-1) - \log_{4}(x-1) < 6$$
.

Решение: Обозначим $\log_4(x-1) = t$. Получим квадратное неравенство:

$$t^2 - t - 6 < 0 \Leftrightarrow (t - 3)(t + 2) < 0 \Leftrightarrow t \in (-2,3).$$

Сделаем обратную замену:

$$-2 < \log_4(x-1) < 3 \Leftrightarrow \log_4 4^{-2} < \log_4(x-1) < \log_4 4^3$$
.

Учитывая, что основания логарифмов равны и больше 1, получим:

$$4^{-2} < x - 1 < 4^3 \Leftrightarrow 1 + \frac{1}{16} < x < 65$$
.

Ответ:
$$\left(1\frac{1}{16};65\right)$$
.

a)
$$\log_3^2 x - 2\log_3 x - 3 < 0$$
;

6)
$$\log_{5}^{2} x - 6 \log_{5} x > -8$$
;

B)
$$\log_{0.5}^2 x + 2\log_{0.5} x < 8$$
;

$$\Gamma$$
) $\log_{\frac{1}{3}}^2 x - \log_{\frac{1}{3}} x > 6$;

д)
$$2\log_2^2 x - 7\log_{0.5} x - 15 \ge 0$$
;

e)
$$\log_{0.25}^2 x - \log_{\frac{1}{16}} x > 0.5$$
;

$$\mathcal{K}) \; \frac{1}{1 - \lg x} < \frac{2 \lg x - 5}{1 + \lg x} \; ;$$

3)
$$\frac{\log_2 x}{\log_2 x - 2} < \frac{2}{\log_2 x + 6}$$
;

$$\text{ H}) \frac{3\log_2 x}{2 + \log_2 x} \le 2\log_2 x - 1$$

$$\text{H} \frac{3\log_2 x}{2 + \log_2 x} \le 2\log_2 x - 1; \qquad \text{K} \log_{\frac{1}{5}} \left(2^{1 + \log_x} - \frac{1}{5^{1 + \log_x}} \right) \ge -1 + \log_x;$$

$$\pi \log_{\frac{1}{3}} \left(5^{1 + \log_{15} x} - \frac{1}{3^{1 + \log_{15} x}} \right) \ge -1 + \log_{15} x;$$

M)
$$\log_2(2^x - 1) \cdot \log_{\frac{1}{2}}(2^{x+1} - 1) > -2$$
.

6.8.4 Неравенства, решаемые обобщённым методом интервалов или методом рационализации

В неравенствах, правая часть которых равна нулю, а левая представляет собой произведение или частное нескольких алгебраических множителей, можно заменить эти множители более простыми, имеющими те же знаки (точнее, те же интервалы знакопостоянства), что и исходные. При этом удобно пользоваться следующей таблицей:

Исходный множитель	Можно заменить на
1. f(x) - g(x)	$\int_{0}^{2} f(x) - g^{2}(x)$
2. $2^{n+1}\sqrt{f(x)} \pm 2^{n+1}\sqrt{g(x)}$	$f(x) \pm g(x)$
$3.\sqrt[2\eta]{f(x)} - \sqrt[2\eta]{g(x)}$	$f(x)$ -g(x), при условиях $\begin{cases} f(x) \ge 0 \\ g(x) \ge 0 \end{cases}$
$4.a^{f(x)} - a^{g(x)}$	$(a-1)(f(x)-g(x))$, при условии $a>0$, $a \ne 1$
$5. \log_{a(x)} f(x) - \log_{a(x)} g(x)$	$(a(x)-1)(f(x)-g(x)),$ при $f(x)>0$ $g(x)>0$ $a(x)>0$ $a(x)\neq 1$
$6.\log_{a(x)} f(x)$	$(a(x)-1)(f(x)-1)$, при $f(x) > 0$ $g(x) > 0$ $g(x) \neq 1$

46. Решите неравенство:

a)
$$\frac{x-5}{\log_{0.5}(x+3)} < 0$$
;

6)
$$\frac{\log_{0,3} x}{2x^2 + 3x - 5} \le 0$$
;

B)
$$(2^{x^2} - 16) \cdot \log_3(x^2 + 1) \ge 0$$
;

$$\Gamma \frac{\log_5 x^2 + \log_{0,2} (4x - 3)}{2^x - 4} \le 0;$$

д)
$$\frac{x^2 - 3x - 4}{\log_7(25 - x^2) - \log_7 9} \le 0;$$
 e) $\frac{\log_3(1 - 2x - x^2)}{\log_2(x + 1 + \sqrt{2})} \ge 0;$

e)
$$\frac{\log_3(1-2x-x^2)}{\log_{3\sqrt{5}}(x+1+\sqrt{2})} \ge 0$$

ж)
$$\frac{2x-6}{\log_2(2x+1)\log_{0.3}(x-1)} \le 0$$

ж)
$$\frac{2x-6}{\log_2(2x+1)\log_{0,3}(x-1)} \le 0$$
; **3)** $\frac{\log_3(x+6)\log_2(10-x)}{|x|-3} \le 0$;

u)
$$\frac{\log_{0,2}(x-2)}{(4^x-8)(|x|-5)} \le 0$$
;

K)
$$\frac{\log_3(3^x-1)}{x-1} \ge 0$$
;

$$\mathbf{J}) \frac{\log_{0,2}(2x-1)\log_3(3x+1)}{|x|-4} \le 0;$$

$$\mathbf{M}) \frac{\log_{0.5} \frac{1}{(2x+3)} + \log_{2}(-x)}{\log_{5}(2x+3) + \log_{0.2} \frac{-1}{(2x+1)}} \ge 0;$$

H)
$$\frac{(4|x|-|x-4|)(\log_{0,3}(x+4)+1)}{2^{x^2}-2^{-2x-1}} \ge 0.$$

6.8.5 Показательно-степенные неравенства

Показательно-степенные неравенства решаются методом логарифмирования.

$$a) x^{2\log_2 x} < 2x;$$

$$6)(5x)^{\lg x-2} < 25$$
;

B)
$$x^{\log_{0.5} x} \ge 2x^2$$
;

$$_{\Gamma}$$
) $(25x)^{\log_{0,2}x} \ge 5^{-3}$;

$$\pi) \left(\frac{x}{10}\right)^{\lg x-2} < 100; \qquad e) x^{\lg^2 x-3\lg x+1} > 1000;$$

$$\pi) \sqrt{x^{\log_2 \sqrt{x}}} > 2; \qquad 3) 27 \cdot 3^{\frac{(\log_3 x)^2}{3}} \le x^{\frac{\log_2 x}{3}};$$

$$\pi) (3x)^{3\log_6(2x)-4} > 2015 x^{\log_6 x}.$$

6.9 Системы логарифмических и показательных неравенств

48. Решите систему неравенств:

48. I emiric cucremy Hepabeneris.

a)
$$\begin{cases} \log_2^2(3x-5) + 2\log_2(3x-5) - 8 < 0 \\ \frac{4^{4-x}}{8^{-x-2}} \ge 2^{21-3x} \end{cases};$$

$$\begin{cases} 7^x + \left(\frac{1}{7}\right)^x > 2 \\ 4^{x^2} \le 64 \cdot 4^{-2x} ; \end{cases}$$
B)
$$\begin{cases} 3^x - 11 \cdot 3^{\frac{x}{2}} + 18 \ge 0 \\ \log_{0,2}(x+1) + \log_{5}(x+1) + \log_{\sqrt{5}}(x+1) < 4 ; \end{cases}$$

$$\begin{cases} 2^x + 6 \cdot 2^{-x} \le 7 \end{cases}$$

$$\Gamma \left\{ \begin{array}{l} 2^{x} + 6 \cdot 2^{-x} \le 7 \\ \frac{2x^{2} - 6x}{x - 4} \le x \end{array} \right. ;$$

$$\exists x + 10 \cdot 3^{-x} \le 11$$

$$\frac{2x^2 - 5x}{x - 3} \le x$$

Список литературы

- 1. Башмаков, М.И. Математика: учебник для 11 класса (базовый уровень) / М.И. Башмаков. М.: Академия, 2019. 320 с.
- 2. Колмогоров, А.Н. Алгебра и начала математического анализа. 10 11 класс: учеб. пособие / А.Н. Колмогоров. М.: Просвещение, 2019. 400 с.
- 3. Математика Подготовка к ЕГЭ в 202 году. Диагностические работы. Профильный уровень. – М.: МЦНМО, 2012. – 82 с.
- 4. Мордкович, А.Г. Алгебра и начала анализа. 10 кл. 11 кл.: учебник. Ч. 1 / А.Г. Мордкович. М.: Мнемозина, 2019. 2019. 405 с.